Erki Sala

Taimepatogeeni *Erwinia carotovora* alaml. *carotovora*
RcsB ja FlhD valkude puhastamine

Bakalaureusetöö

Juhendajad: PhD Andres Mäe
MSc Liis Andresen

Tartu 2009
Sisukord

Lühendid .. 4
Sissejuhatus .. 5
1. Kirjanduse ülevaade ... 6
 1.1. Taimepatogeenid perekonnast Erwinia ... 6
 1.2. Taime rakuseina lagundavad ensüümid kui erwiniate virulentsusfaktorid. 7
 1.3. Virulentsusfaktorite sünteesi regulatsioon ... 8
 1.4. Kahekomponeendilised süsteemid Erwinia carotovora alaml. carotovoras 9
 1.5. Kahekomponeendilised süsteemid .. 10
 1.6. Rcs süsteem. .. 13
 1.7. Rcs süsteem Erwinia-s .. 15
 1.8. Töö eesmärk ja ülesanded .. 16
2. Materjal ja metoodika .. 17
 2.1. Kasutatud bakteritüved ja plasmiidid ... 17
 2.2. Söötmed ja kasvatamine .. 18
 2.3. Transformattsioon ... 18
 2.4. Polümeraasi ahelereaktsioon (PCR) .. 18
 2.5. Geelelektroforees ... 20
 2.6. Sekveneerimine ... 20
 2.7. Plasmiidse DNA eraldamine ja restriktsioonanalüüs ... 21
 2.8. Kloneerimine .. 21
 2.9. Valkude puhastamine .. 22
 2.10. SDS-polüakruülamidegeeli valamine ja elektroforees .. 23
 2.11. Radioaktiivse proovi valmistamine ... 24
 2.12. Valk-DNA komplekside analüüs gel mobility shift meetodiga 24
 2.13. DNase I Footprint ... 25
3. Tulemused ja arutelu .. 26
 3.1. Valguespressioonikonstruktide tegemine ... 26
3.2. Valkude puhastamine .. 28
3.3. RcsB valgu otseste sihtmärkide leidmine .. 30
Kokkuvõte.. 34
Summary .. 35
LÜHENDID

APS – ammoniumpersulfaat

Ecc – Erwina carotovora alamliik carotovora

IPTG - isopropüül-β-D-thiogalaktopüranosiid

PCWDE – ik. plant cell wall degrading enzymes

TEMED – tetrametületüleendiamiin
SISSEJUHATUS

Käesoleva töö eesmärgiks on puhastada kaks valku (RcsB ja FlhD), et hilisemates töödes selgitada välja nende rolli Rcs süsteemis ja kuidas nende andmed toimub taimerakukest lagundavate ensüümide produktsiooni regulatsioon *Ecc* tüves SCC3193. Kirjanduses on toodud ülevaade kahekomponendilistest süsteemidest ja *Ecc* virulentsusfaktoritest ning nende regulatsioonist.

Tänan oma juhendajaid Liis Andreseni ja Andres Mäed ning meeldivat laborikollektiivi.
1. KIRJANDUSE ÜLEVAADE

1.1. Taimepatogeenid perekonnast *Erwinia*.

Lisaks taimekudesid lagundavate ensüümide produktioonile omavad erwiniad ka eksopolüshrariidide ja lipopolüshrariidide sünteesi radu, Hrp tüüpi III sekretsooniüsteemi ning liikuvust. Kõik nimetatud omadused erwinias annavad oma ose tema virulentsusele ja taim sellisele kompleksmusele ongi see patogeen niivõrd edukas (Oh ja Beer, 2005; Hossain jt., 2005).

1.2. Taime rakuseina lagundavad ensüümid kui erwiniate virulentsusfaktorid.

Märgmädanikku põhjustavate erwiniate olulisteks virulentsusfaktoriteks on mitmesugused taime rakuseina komponente lagundavad ekstratsellulaarsed ensüümid (virulentsusfaktorid). Patogeeni poolt produtseeritavad ensüümid lagundavad taime primaarset ja sekundaarset rakukesta ning vahelamelli polüsaahhariide, tselluloosi, hemitselluloosi ja pektiini, mis toob kaasa taimerakkude eraldumise ja koe pehmenemise, mille tagajärjeks on taimeraku surm vee lekke tõttu protoplasmast (Pèrombelon, 2002).

7
1.3. Virulentsusfaktorite sünteesi regulatsioon

Taim-patogeen interakstioon on kahepoolne protsess, milles patogeen püüab koordineerida virulentsusfaktorite sünteesi, taim aga õigeaegselt käivitada patogeeni paljunemist ja levikut tõkestavad protsessid. Põhiliselt indutseerivad nakatunud taimedes kaitsevärvike sünteesi mitmesugused pektiini laguprodutid (oligogalakturoniidid), mis tekivad pektinolüütiliste ensüümide toel (Norman jt., 1999). Seega ei piisa taime edukaks nakatamiseks mitte ainult massilisest virulentsusfaktorite sünteesist, vaid see kompleksne protsess peab olema täpselt reguleeritud ja koordineeritud kõigil infektsiooni erinevates osades.

1) Hulgatunnetus ehk „quorum-sensing“, mis reguleerib virulentsusfaktorite sünteesi sõltuvalt bakteripopulatsiooni tiheudest (Pirhonen jt., 1993; Sjöblom jt., 2006);

3) Mitmed kahekomponentilised regulatsiooni süsteemid (TCS) tunnevad ära erinevaid väliskeskkonna signaale ning reguleerivad virulentsusfaktorite sünteesi vastavalt bakterit ümbritsevale keskkonnale. Ecc teadaolevad kahekomponentilised süsteemid, mis reguleerivad virulentsusfaktorite sünteesi,

1.4. KahekOMponentendid süsteemid *Erwinia carotovora* alaml.

PmrA-PmrB. See kahekOMponentendiline regulatsioonisüsteem koosneb sensorvalgust PmrA ja vastusregulaatorist PmrB. PmrA-PmrB regulatsioonisüsteem mõjutab taimerakukesti lagundavate enüümide sünteesi sõltuvalt keskkonna pH-st ja Fe-iodoonide kontsentratsioonist (Hyytiäinen jt., 2003).

Rcs süsteem. Rcs-regulatsioonisüsteemi on kõige rohkem uuritud *Escherichia coli*, kus see avastati kui kapslit moodustavate polüsaahhariidide sünteesi kontrolliv süsteem (Gottesman jt., 1985). Praeguseks on selgunud, et Rcs süsteem osaleb erinevates bakterite paljude füsioloogiliste protsesside regulatsioonis (Huang jt., 2006).

Erinevad kahekOMponentendised regulatsiooni sünteedid võivad ka omavahel interakteeruda, mille tulemusena moodustub mitmeastmeline regulatoroorm vörgustik, mis tagab erinevate virulentsusfaktorite koordineeritud produktsiooni õigel ajal õiges kohas. (Hyytiäinen jt., 2001;
Kõiv ja Mäe, 2001; Sjöblom jt., 2006). Käesoleva töö seisukohalt on olulised just kahekomponeendilised regulatsioonisüsteemid, mistõttu tutvustan neid järgeval lähemalt.

1.5. Kahekomponeendilised süsteemid

Sõltuvalt kahekomponeendilistesse süsteemidesse kuuluvate valguste struktuurist ja arvust, võib neid süsteeme jaotada kolme erinevasse klassi:

Teise klassi moodustavad sellised kahekomponendilised süsteemid, kus sensorvalk omab lisaks sisenddomäänilile ja autofosforülateid domäänilile veel teist vastuvõtudomääni ja fosfaatrühma ülekandedomääni (Joonis 1 B). Sellise ehitusega kahekomponendiline süsteem on näiteks *E. coli* kirjeldatud ArcB-ArcA süsteem (Mizuno, 1998).

Kolmadasse klassi kuuluvad mitmeastmelised regulatsioonisüsteemid, mis koosnevad kolmest valgust (fosfaatrühma ülekandesüsteemid), kuhu lisaks sensorile, fosfaatrühma ülekandjale ja vastusregulaatorile kuuluvad veel nn. abivalgud (Joonis 1 C). Abivalgud võivad osaleda nii signaali vastuvõtmisel keskkonnast kui ka fosfaatrühma ülekandel vastuse regulaatorile (fosfaatrühma ülekandedomään). Siia rühma kuuluvad *V. harvey* LuxC/LuxD/LuxA/LuxB/LuxE/LuxG süsteem (Meighen, 1993), *Saccharomyces cerevisiae* Sln1/Ypd1/Ssk1 (Posas jt., 1996) ja *Escherichia coli* Rcs süsteem (Huang jt., 2006).
1.6. Rcs süsteem.

bakterites *ftsZ* geeni ekspressiooni, mille poolt sünteesitud valk on vajalik raku normaalseks jagunemiseks (Addinall ja Holland, 2002).

Üheks füsioloogiliseks protsessiks, mida Rcs süsteem bakterites mõjutab on liikuvus. Rcs süsteemi mõju liikuvusele toimub läbi regulaator valgu FlhDC. FlhDC on positiivne regulaator, mis mõjutab positiivselt paljude viburit moodustavate valkude sünteesi. RcsB seondub *flhDC* regulaatorpiirkonnaga ja blokeerib transkriptsiooni. Seega käitub RcsB kui negatiivne regulaator ja mõjutab viburit moodustavate valkude sünteesi määravate geenide sünteesi otse, vaid läbi regulaatorit FlhDC (Francez-Charlot jt., 2003)

1.7. Rcs süsteem *Erwinia*-s

Rcs süsteemi regulatoorset rolli on uuritud päris põhjalikult inimpatogeenides, kuid suhteliselt vähe on tehtud tööd tema rolli ja tähtsuse selgitamiseks märgmädanikku põhjustavates bakterites. Eelnevates töödes on näidatud, et Rcs süsteem reguleerib ekspolüsahhariidide sünteesi *Erwinia amylovora* ja *Pantoea stewartii* (Majdalani ja Gottesman, 2005).

Ecc ja *E. coli* Rcs süsteemid on homoloogid, kuid nende vahel on ka üks oluline erinevus. Nimelt *Ecc*-s ei ole senimaani tuvastatud RcsF valku, mis *E. coli*-s käitub kofaktorina,
seondudes koos RcsB-ga RcsAB boxile ning sedasi mõjutades geenide transkriptsiooni (Frencez-Charlot jt., 2003).

Ecc-s on näidatud, et Rcs süsteem reguleerib mitmeid virulentsusfaktoreid, kuid kuidas selle regulatsioonisüsteemi mõju jõuab virulentsusfaktoriteni ei ole teada (Andresen jt., 2007). Cui jt. näitasid, et _Ecc_ tüves 71 osaleb regulaatorvalk FlhDC lisaks viburite sünteesile, ka virulentsusfaktorite sünteesi regulatsioonis, käitudes kui positiivne regulaator (Cui jt., 2008). Kuna mitmetes loomapatogeenis on näidatud, et Rcs süsteem mõjutab viburite sünteesi _flhDC_ kaudu, siis ei saanud me välistada võimalust, et ka _Ecc_ jõuab Rcs süsteemi mõju virulentsusfaktorite sünteesi määravate geenide ni just FlhDC vahendusel.

1.8. **Töö eesmärk ja ülesanded**

2. MATERJAL JA METOODIKA

2.1. Kasutatud bakteritüved ja plasmiidid

Kõik antud töös kasutatud bakteritüved ja plasmiidid on toodud tabelis 1.

Tabel 1. Kasutatud bakteritüved ja plasmiidid

<table>
<thead>
<tr>
<th>Tüvi või plasmiid</th>
<th>Genotüüp või iseloomustus</th>
<th>Allikas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bakteritüved:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erwinia carotovora alaml. carotovora SCC3193</td>
<td>metsiktüvi</td>
<td>Pirhonen jt., 1988</td>
</tr>
<tr>
<td>Escherichia coli BL21(DE3)</td>
<td>sisaldab IPTG poolt induitseeritava promotoori all olevat T7 polümeraasi gene</td>
<td>Studier ja Moffatt, 1986</td>
</tr>
<tr>
<td>Escherichia coli DH5α</td>
<td>supE4, AlacU169, (lacZΔM15), hasdR17, recA1, endA1, gyrA 96, thi-1, relA1</td>
<td>Hanahan, 1983</td>
</tr>
<tr>
<td>Vektorplasmiidid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pET-24d</td>
<td>Valgu ekspressiooni vektor Km(^R);</td>
<td>(Novogen Inc., Madison, WI)</td>
</tr>
<tr>
<td>pBluescript SK(+)</td>
<td>Kloneerimisvektor, Amp(^R)</td>
<td>Stratagene</td>
</tr>
<tr>
<td>rcsBBSK</td>
<td>Praimeritega RcsBNcoI ja RcsBHindIII amplifitseeritud rcsB geen on kloneeritud pBluescript SK(+) SmaI restriktsioonisaiti</td>
<td>Käesolev töö</td>
</tr>
<tr>
<td>flhDBSK</td>
<td>Praimeritega FlhDXhoI ja FlhDNcoI amplifitseeritud flhD geen on kloneeritud pBluescript SK(+) SmaI restriktsioonisaiti</td>
<td>Käesolev töö</td>
</tr>
<tr>
<td>pET24(d)RcsBHis</td>
<td>rcsBBSK-st restriktasidega NcoI ja HindIII lõigatud rcsB geen, kloneeritud vektorisse pET-24d, 6xHis-tag, Km(^R)</td>
<td>Käesolev töö</td>
</tr>
<tr>
<td>pET24(d)FlhDHis</td>
<td>flhDBSK-st restriktasidega XhoI ja NcoI lõigatud flhD geen, kloneeritud vektorisse pET-24d, 6xHis-tag, Km(^R)</td>
<td>Käesolev töö</td>
</tr>
</tbody>
</table>
2.2. Söötmed ja kasvatamine

Erwinia carotovora alaml. *carotovora* rakud kasvatati temperatuuril 30°C ja *Escherichia coli* rakke kasvatati temperatuuril 37°C, kui ei ole teisiti mainitud. Vedelsöötmena kasutati LB-söödet ning vedelsöötmel kasvatades aeereriti kultuure loksutil (Miller, 1972). Tardsöötme saamiseks lisati LB-vedelsöötmele agarit (15 g/l). Selektsooniks kasutati antibiootikumidest kanamütsiini (Km; 25 µg/ml) ja ampitsilliini (Amp; 150 µg/ml). Valkude puhastamiseks indutseeeriti nende ekspressiooni lisades LB söötmesse 20 µl IPTG-d (isopropüül-β-D-thiogalaktopüranosiid; 0,1mM). Sini-valge testi tegemisel lisati söötmeele (0,2 mM IPTG-d, 0,08 mg/ml X-gal-i).

2.3. Transformatsioon

Transformatsiooniks kasvatati retsipienttüve rakke LB-söötmes tiheduseni OD₆₀₀ ~0,2-0,3. *E. coli* DH5α ja BL(DE31) rakud viidi kompetentseks Hanahani (1983) poolt kirjeldatud CaCl₂ meetodil. Tüve transformsiooniks lisati DNA-d kompetentsetele rakkudele, mille järel hoiti neid 30 minutit jää, seejärel 1,5 minutit 42°C juures ning uuesti 10 minutit jää. Seejärel plaaditi rakud LB tardsöötmele, mis sisaldas selektsooniks vajalikku antibiootikumi.

2.4. Polümeraasi ahelreaktsioon (PCR)

Erwinia carotovora alaml. *carotovora* tüve SCC3193 kromosoomist amplifitseeriti 653 ap pikkune pormootorita rcsB ja 365 ap pikkune promootorita flhD geen PCR meetodil. rcsB amplifitseerimiseks kasutati praimereid RcsBNcoI ja RcsBHindIII (Tabel 2), mille otstes on vastavalt NcoI ja HindIII restriktsoonisaaidid. flhD kodeeriva järjestuse amplifitseerimiseks kasutati praimereid FlhDNcoI ja FlhDXhoI (Tabel 2), mille otstes on vastavalt NcoI ja XhoI restrikttaaside lõikesaidid.

<table>
<thead>
<tr>
<th>Nimi</th>
<th>Järjestus (3´-> 5´)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RcsBNcol</td>
<td>CCATGGGTAACCTAAACGTAATTATTGC</td>
</tr>
<tr>
<td>RcsBHindIII</td>
<td>AAGCTTGTCGACTTGTTGCGCCGC</td>
</tr>
<tr>
<td>FlhDNcol</td>
<td>CCATGGGAATATGGGTACCTC</td>
</tr>
<tr>
<td>FlhDXhoI</td>
<td>CTCGAGTGCCCTTTTCTTAGGC</td>
</tr>
<tr>
<td>M13Fw</td>
<td>GTAAAACGACGGCCAGT</td>
</tr>
<tr>
<td>M13Rev</td>
<td>AACAGCTATGACCATG</td>
</tr>
<tr>
<td>rprAY</td>
<td>AACCGCAGAACCCTCCTCTCTG</td>
</tr>
<tr>
<td>rprAcons1</td>
<td>AGGGGATGGGCAAAGACTAC</td>
</tr>
<tr>
<td>T7 terminaator</td>
<td>GCTAGTTATTGCTCAGCGG</td>
</tr>
</tbody>
</table>

Kuna amplifitseeritud fragmenti oli vaja kloneerida Bluescript SK Smal restriksioonisaiti, kasutati amplifitseerimiseks Pfu DNA polümeraadit (Fermentas), mis omab 3´-5´ eksonukleiasset aktiivsust ja tömbistab kaheahelalise DNA üleulatuvad otsad.

PCR reaktsioonisegu üldmahuga 50 µl sisaldas destilleeritud vees:

1x Pfu amplifikatsiooni puhvrit (Fermentas); 0,2 mM dNTP (dATP, dGTP, dCTP, dTTP); 2 mM MgSO₄; kumbagi praimerit 0,4 pmol (RcsB ekspresiooni konstrukti jaoks RcsBNcol ja RcsBHindIII, FlhD ekspresiooni konstrukti jaoks FlhDXhoI ja FlhDNcol); 0,0125 u/µl Pfu DNA polümeraasi (Fermentas); märklaud-DNA-d (Erwinia carotovora alaml. carotovora tüvi SCC3193 kromosoom) 20-50 ng.

PCR-i reaktsiooni etapid:
1. DNA ahelate denatureerimine 94°C 30 sekundit;

2. Praimerite paardumine DNA ahelatega 55°C 30 sekundit;

3. DNA süntees 68°C 1,5 minutit;

Tsüklite arv: 30.

Valguespressiooni konstruktide kloneerimise kontrollimiseks kasutati samuti PCR meetodit. Sel juhul sisaldas PCR reaktsioonisegu mahuga 25 µl destilleeritud vees:

1x PCR-i puhvrit (75 mM Tris-HCl, pH 8,8; 20 mM (NH₄)₂SO₄; 0,01% Tween 20); 0,2 mM dNTP mix-i (dATP, dGTP, dCTP, dTTP); 4 mM MgCl₂; kumbagi praimerit 0,4 pmol; 0,009 u/µl Taq DNA polümeraasi (Fermentas); märklaud DNA-d (transformeeritud DH5α rakud).

PCR-i reaktsiooni etapid:

1. DNA ahelate denatureerimine 94°C 30 sekundit

2. Praimerite paardumine DNA ahelatega 55°C 30 sekundit

3. DNA süntees 72°C 2 minutit

Tsüklite arv: 25.

PCR reaktsiooniproduktide kontrollimiseks viidi läbi geelelektroforees.

2.5. Geelelektroforees

Geelelektroforeesesiks lisati DNA-le 0,04%-list broomfenoolisvinise lahust 50%-lisest glütseroolis, 20 µl kohta 4 µl. Proov kanti horisontaalsele etidiumbromiidi sisaldavale 0,8%-lisele agaroosgeelile TAE puhvis (50 mM Tris-atsetaat; 1 mM EDTA; pH 8,2). Elektroforees toimus toatemperatuuril pingel 100 V. Geeli pildistati UV-valguses.

2.6. Sekveneerimine

Kaksikahelalise DNA nukleotiidse järjestuse määramiseks kasutati ensümaatilist Sangeri didesoksünukleotiididega termineerimise meetodit (Sanger jt. 1977). Sekveneerimisproovid
valmistati vastavalt BigDye terminator v3.1 Sequencing Kit-i protokollile (Applied Biosystems).

Sekveneerimiseks kasutati praimereid M13Fw ja M13Rev (Tabel 2).

PCR reaktsiooni etapid:

1. DNA ahelate denatureerimine 95°C 20 sekundit
2. Praimeri paardumine DNA ahelaga 58°C 15 sekundit
3. DNA süntees 60°C 1 minut

Tsüklite arv: 40

Saadud sekveneerimisproov sadestati lisades proovile 2 µl dekstraanilahust (2 osa dekstraani (10mg/ml) ja 1 osa NaAc/EDTA) ja külma filtreeritud 96% etanooli (lahuse lõppkantsentratsioon 75%). Hoiti 30 minutit -20°C. Tsentrifuugiti 15 min, 4°C juures 13000 p/min. Sadet pesti 200µl 75% etanooliga, tsentrifuugiti põhja ja eemaldati supernatant. Pesu korrati kaks korda. Sade lasti seejärel kuivada õhu käes, kuni etanool oli ära aruanud. Seejärel resuspendeeriti DNA sade 10 µl-s 70% formamiidis. Proove säilitati temperatuuril -20°C.

Proovid sekveneeriti ABI 3130xl Genetic Analyzer (Applied Biosystems) sekvenaatori abil.

2.7. Plasmiidse DNA eraldamine ja restriktsioonanalüüs

2.8. Kloneerimine

Restriktsioonil saadud DNA fragmendid eraldati geelelektrofooresil ja DNA puhastati 0,8% agaroosgeelist, kasutades UltraClean™ 15 DNA Purification Kit From Gels and Solutions (Mo Bio Laboratories, Inc). Kloneerimine teostati standardprotokolli järgi (Sambrook ja Russell, 2001). Kasutatud ensüüm T4 ligaas ja selle puhver olid firmalt „Fermentas“. Ligeerimine teostati „Fermentase“ ligeerimise protokolli järgi.
2.9. Valkude puhastamine

Escherichia coli tüve BL21(DE3) rakke, mis sisaldasid ekspressioonikonstrukti (pET24(d)RcsBHis või pET24(d)FlhDHis), kus valgu (RcsB või FlhD) geen oli kloneeritud T7 promootori alla, kasvatati üleöö LB-söötmes Km (20 µg/ml) juuresolekul. Rakud lahendati 1:100 värskesse söötmesse ning kasvatati tiheduseni OD$_{600}$≈0,5. Valkude ekspressiooni induitseerimiseks lisati rakukultuuri IPTG-d löppkontsentratsiooniga 0,5 mM ning kasvatati 2 tundi temperatuuril 30°C. Seejärel tsentrifuugiti rakud põhja (5000 p/minutis, 5 minutit, 4°C; Heraeus Biofuge Fresco). Rakud suspendeeriti sonikeerimispuhvris (Tabel 3) ning purustati ultraheliga (sonikeerimisega) (Ultrasonic Homogenizer 4710 Series, Cole-Parmer Instrument Co., Chicago, Illinois 60648) 3×10 sekundit. Rakukestad koos membraanoseiseliste valkudega tsentrifuugiti põhja (5000 p/minutis, 15 minutit, 4°C; Heraeus Biofuge Fresco). Lahustunud valkudega supernatandile lisati 20 µl Ni-NTA-agaroosi (Qiagen; nn. Ni-kerakesi) 500 µl lüsaadi kohta ja pandi 4°C juurde 3-ks tunniks segajale. Ni-kerakesed tsentrifuugiti põhja (15 minutit, 2000 p/min, 4°C) ning pesti 4 korda pesupuhvriga (Tabel 3). Kolmas kord lisatud pesupuhver pipeteeriti koos Ni-kerakestega isevalmistatud kolonni. Supernatant tsentrifuugiti (1 minut, 2000 p/minitis; Heraeus Biofuge Pico) kolonnist läbi, Ni-kerakesed jäid kolonni. Valgud elueeriti Ni-keradelt 25 µl elueerimispuhvriga (erinevad elueerimispuhvrid antud Tabelis 3).

<table>
<thead>
<tr>
<th></th>
<th>Sonikeerimis- ja pesupuhvrid</th>
<th>Elueerimispuhvrid</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S1</td>
<td>P1</td>
</tr>
<tr>
<td>Tris-HCl</td>
<td>100 mM</td>
<td>100 mM</td>
</tr>
<tr>
<td>pH</td>
<td>pH7,5</td>
<td>pH7,5</td>
</tr>
<tr>
<td>NaCl</td>
<td>1 M</td>
<td>1 M</td>
</tr>
<tr>
<td>DTT</td>
<td>10 mM</td>
<td>10 mM</td>
</tr>
<tr>
<td>EDTA</td>
<td>0,1 mM</td>
<td>0,1 mM</td>
</tr>
<tr>
<td>glutserool</td>
<td>5%</td>
<td>5%</td>
</tr>
<tr>
<td>Triton-X-100</td>
<td>0,1%</td>
<td>0,1%</td>
</tr>
<tr>
<td>imidasool</td>
<td>25 mM</td>
<td>50 mM</td>
</tr>
</tbody>
</table>

2.10. SDS-polüakrüülamiidgeeli valamine ja elektroforees

SDS geeli jaoks valmistati 15% lahutav geel ja kontsentreeriv geel. Geeli lahatav osa sisaldab: 5 ml lahust A (30% akrüülamiidi, 0,8% bisakrüülamiidi), 2,5 ml lahust B (1,5 M Tris, 0,4% SDS pH8,8), 2,5 ml destilleeritud vett, 16,7 µl TEMED (tetrametüületüleendiamiin) 60 µl 10% APS (ammoniumpersulfaat). Geeli kontsentreeriv osa sisaldab: 0,8 ml lahust A, 1,25 ml lahust C (0,5 M Tris, 0,4% SDS), 2,95 ml destilleeritud vett, 7,5 µl TEMED, 75 µl 10% APS. Saavutamaks geelis ühtlase tasapinna kontsentreeriva ja lahatava osa vahel tuli pärast lahutava geeliosa valmistatud ~70µl butanooli peale pipeteerida. Butanool valgub geeli pinnal ühtlaselt laiali ja tekib lahatavale geeliosale sileda pinna. Kui geeli lahatav osa on ära tardunud siis eemaldatakse butanool kas filterpaberiga või pestakse destilleeritud veega. Seejärel valatakse geeli kontsentreeriv osa.

2x proovi värv (pH6,8) sisaldab: 100 mM Tris-i, 20% glutserooli, 4% SDS-i, 0,2% broomfenoolsinist, 2% β-merkaptoetanooli. 5xSDS geeli foreesipuhver sisaldab: 25 mM Tris-
i, 250 mM glütsiini, 0,1% SDS-i. Valgu suspensioonile lisati 2x proovi värv ning kuumutati 5 minutit temperatuuril 97°C. Seejärel jahutati proovid maha ning kanti SDS-poluakrüülämiidgeelile. Proovid jooksutati pingel 120 V 70 minutit.

Pärast elektroforeesil lõppemist lasti geelil loksuda üleöö Coomassie blue lahuses (50% etanooli, 10% äädikhapet, 0,05% Coomassie Brilliant Blue R) ja pesti 3 korda pesulahusega (7% äädikhapet, 25% etanooli), kuni taust on muutunud värvituks. Pestud geelid säilitati destileeritud vees.

2.11. Radioaktiivse proovi valmistamine

Märgistatud DNA fragmendi puhasud elektroforesel 5% polüakrüülämiidgeelis, elueeriti geelist (elueerimispuhver sisaldas 0,5 M NH₄Ac, 10 mM MgAc, 1 mM EDTA, 0,1% SDS; pandi üleöö loksutama temperatuuril 37° C), sadestati etanooliga ja lahustati vees. Proovi radioaktiivsus mõõdeti firma Perkin Elmer, Liquid Scintillation Analyzer masinaga.

2.12. Valk-DNA komplekside analüüs gel mobility shift meetodiga

Valgu DNA-ga seondumise uurimiseks kasutati gel mobility shift analüüsi, kus DNA fragmendi liikuvus muutub geelis, kui DNA-ga on seondunud valk. Puhasud DNA proove (1000 c. p. m.) inkubeeriti koos RcsB 30 µg valguga 20 minuti jooksul 20 µl reaktsioonisedus (25 mM TrisHCl (pH 7,5), 0,1 mM EDTA, 50 mM KCl, 10 mM MgCl₂, 1 mM CaCl₂, 5% glütserool), 2 µg lõhe spermi DNA (salmon sperm, SS), 1 µg veise seerumi albumiini (bovine serum albumin, BSA)]. Gel mobility shift assay viidi läbi 5% polüakrüülämiidgeelis, jooksupuhvriks kasutati 0,5x TBE puhvrit (pH 7,5). Kasutati vertikaalset foreesi pingel 100 V, temperatuuril 4° C, 150 min. Geel kuivatatagi vaakumkuivatis ning eksponeeriti
PhosphorImager kassetis (Amersham Biosciences) ekraanile ning analüüsiti Phosphoimager Typhoon III masinaga.

2.13. DNase I Footprint

DNase I footprint analüüsiks vajalikud radioaktiivselt märgistatud DNA proovid valmistati peatükis 2.11 kirjeldatud meetodil. DNA ja valgu seondumisreaktsioon toimus samuti eespool kirjeldatud puhvris ning tingimustel (*vt.* 2.12 Valk-DNA komplekside analüüs *gel mobility shift* meetodiga), kuid reaktsiooni maht oli 100 μl ja märgistatud DNA-d oli reaktsioonis 30000 c.p.m. Reaktsioonid, mis omasid erinevat kogust valku ja seega erinevat mahtu viidi võrdseks kasutades RcsB dialüüsipuhvrit (10 mM Tris-HCl pH 7,5; 200 mM KCl; 1 mM DTT; 0,5 mM EDTA; 50% glütserooli). Valgul ja radioaktiivselt märgitud DNA-i lasti seonduda 20 minutit toatemperatuuril. Seondumisele järgnes DNA osaline lõikus 0,01 ühiku DNAas I-ga (Fermentas) 3 minuti vältel. DNAas I töötlus peatati lahuses, mis sisaldas 0,1 M EDTA-d; 0,1% naatriumdodetsüülatsüülaati (SDS); 1,6 M ammoniumatsetaati ja lõhe spermi DNA-d (20 μg/ml). Seejärel teostati reaktsioonisegudele fenool-kloroform-töötlus ja DNA sadestati 96% etanooliga. Proovid lahustati 7 μl-s lahuses, mis sisaldas 10 mM EDTA-d; 0,3% broomfenoolsinist ja 0,3% ksüleensüanooli ning kanti 6,5% polüakrüüliametidegeelile, mis sisaldas 8 M uuread. *rprA* promotori järjestus määrati, kasutades Sequenase Version 2.0 DNA Sequencing Kit (US Biochemicals) lahuseid ja ensüüme ning kanti samale geelile. Elektroforees toimus pingel 2000 V umbes 4 tundi. Seejärel geel kuivatati geelkuvatis ja eksponeeriti PhosphorImager kasseteile (Amersham Biosciences) ning analüüsiti Phosphoimager Typhoon III masinaga.
3. TULEMUSED JA ARUTELU

Minu töö eesmärgiks oli luua valgueekspressiooni konstrukt, mis võimaldaks sünteesida ja puhastada RcsB ja FlhD valke. Valkude puhastamine on eeltöö edasiseteks katseteks nende funktsioonide määramisel. Teiseks käesoleva töö eesmärgiks oli näidata RcsB valgu rolli geenide transkriptsioonilises regulatsioonis Ecc-s.

3.1. Valgu ekspressioonikonstruktide tegemine

SmaI saiti. SmaI ensüümiga vektorit lõigates tekivad plasmiidis tömbid otsad ja see võimaldab meil hiljem Pfu polümerasiga amplifitseeritud PCR fragmendid sinna ligeerida.

Kontrollimisel, kas restrikaasidega lõigatud fragment oli kloneeritud vektorisse pET-24d, kasutasin kahte meetodit. Esiteks eraldasin rakkudest plasmiidse DNA ning lõikasin konstrukti vastavate restrikaasidega: pET24(d)RcsBHis konstrukti NcoI ja HindIII, pET24(d)FlhDHis konstrukti restrikaasidega NcoI ja XhoI, misjäreli eraldasin fragmentid elektroforeesil. Geeli ühel rajal oli restrikaasidega töötlmata plasmiid ja teisel restrikaasidega töödeldud konstrukt. Restektsooni oli õnnestunud kuna konstruktist oli välja lõikunud õige pikkusega DNA fragment (võrdne vastavalt, kas rcsB või flhD geeni pikkusega) ning töödeldud konstrukti vektori osa bänd asus geelis kõrgemal kui töötlmata plasmiidil. Teiseks kontrollimise meetodiks oli PCR. Selleks amplifitseerisin plasmiidset DNA-lt primeritega RcsBNcoI ja RcsBHindIII ja flhDNcoI ja flhDXhoI kloneeritud rcsB ja flhD geenid. Kontrollitud valguespressiooniplasmiidid tähistati pET24(d)RcsBHis ja pET24(d)FlhDHis.

rcsB ja flhD geenid järjestused pET-24d-s sekveneeriti kahel põhjusel: esiteks oli vaja teada saada, kas geenid said kloneeritud samasse lugemisraami histidiini kodeerivate koodonitega ning teiseks kontrollida geenide nukleotiidset järjestust, et need ei sisaldaks mutatsioone. Sekveneerimiseks kasutati T7 promootorprimerit. Saadud sekveneerimistulemustest selgus.
et rcsB ja flhD geenid olid lugemisraamis ning nukleotiidsed järjestused vastasid rcsB ja flhD geenide omadele.

3.2. Valkude puhastamine

Histidiini saba omavate RcsB ja FlhD valkude ekspresseerimiseks transformeeriti ekspressioonikonstruktid (pET24(d)RcsBHis ja pET24(d)FlhDHis) E. coli BL21(DE3) ekspressioonitüvesse. Valik selle tüve kasuks tehti T7 RNA polümeraasi geeni olemasolu tõttu BL21(DE3) tüves, mis on vajalik ekspressiooniks T7 promootorilt. Transformeeritud BL21(DE3) rakke kasvatati üleöö temperatuuril 37°C LB-söötmes Kم juuresolekul. Homnikul tehti lahjendus 1:100 värskesse söötmesse ning kasvatati rakke tihedani OD₆₀₀ ~0,5. Seejärel lisati IPTG, mis induitseerib T7 polümeraasi süsteesi BL21(DE3) tüves ja võimaldades sedasi T7 promootori all olevate valkude ekspressiooni. Edasi tuli leita valgu induitsiooniks kõige optimaalsemad tingimused. Selleks induitseerisin närskelt üleskasvatatud rakud erinevate IPTG kontsentratsioonidega. Lisaks proovisin, kas induksiooni aeg mõjutab valguespressiooni taset. Selleks kasutasin kahte erinevat IPTG kontsentratsioonidega. Seejärel eraldasin rakud tsentrifuugimisel ning purustasin 100 mM Tris (pH 7,5) lahuses ja purustasin sonikeemisega. Sonikeeritud rakud tsentrifuugisin põhja. Eraldasin supernatandi, mis sisaldas lahusunud valke ja kasutasin seda edasises töös.

Valkude induksiooni kontrollisin SDS geelil (Joonis 4.). Selgus, et IPTG erinevad kontsentratsioonid ja induksiooni aeg ei mõjuta oluliselt valkude ekspressiooni. See võib olla tingitud asjaolust, et IPTG poolt induitseeritud valk hakkab kuhjuma rakus ning pärrsima tema elutegevust. Edasises töös kasutan valkude induksiooniks 0,5 mM IPTG-d ning induitseerin 3 tundi.

Joonis 5. FlhD valgu puustastmise kontrollimine SDS geelil. 1 rajal on valgu liisa, kus tume bänd tähistab FlhD valgu üleekspressiooni. 2 rajal on valgulüsaat, millest on FlhD valk väljapuhastatud. 3, 4, 5 rajal on valgulüsaadid pärast 1, 2 ja 3 eiüueimist puhvriga E2. M on tähistatud marker (PageRuler™ Prestained Protein Ladder, Fermentas).

Vaatamata sellele, et puustatud valgu saagis oli väga hea, ei olnud võimalik His tag afiïsuskolonni õpäris puust valku võimalik kätte saada. Peale igat puustastumist valku geelil kontrollides oli näha teiste valkude fraktsioone (Joonis 5).

3.3. RcsB valgu otseste sihtmärkide leidmine

Selgitamaks välja, kas RcsB valk seondub rprA promotortriirkonnaga Ecc-s, viisin läbi gel mobility shift analüüsi. Gel mobility shift on elektroforeetiline DNA(vöi RNA) ja valgu kompleksi eraldamise meetod polüakrüül- või agaroosgeelil. Meetod põhineb asjaolul, et DNA liikumise kiirus läbi geelimaatriksi sõltub järjestuse pikkusest ja laengust, vahesel määral ka struktuurist. Kui valgu ja DNA vahel toimub seondumine siis liigub DNA-valg komplex aeglasmalt võrreldes vaba DNA-ga. Gel mobility shifti analüüsi läbiviimine valgulüsaadiga (sisaldab bakteris kõiki lahustunuid valke) oli keeruline muude valkude olemasolul tõttu, mis võisid samuti moodustada DNA-ga kompleksi ja tulemustes ei saanud kindel olla. Pärast mõningaid katseid puustasime RcsB valgu lüsaadist ja teostasime uue gel mobility shift analüüsi puhta RcsB valguga.

Joonis 6. Valk-DNA komplekside analüüs *gel mobility shift* **meetodiga.** Vasakpoolses reas on puhas rprA promootori regioon ja parempoolses reas on rprA promootori regioon voolutatud koos RcsBHis-tag (1,3 µg) valguga. Parempoolses reas on näha, kuidas valgu ja DNA kompleks jookseb geelis aeglasemalt moodustades geeli ülal ebamäärase kuid nähtava bändi.

RcsB valguga *gel mobility shift* analüüsi flhD promootor piirkonnale ei teostanud, viisime kohe läbi Dnaas I footprinti analüüsi. Footprinti analüüs (Joonis 7) teostati märgistatud DNA piirkonnaga positsioonidest -374 kuni -171 flhD geeni stardi koodonist, mis näitas seondumist RcsBHis-tag valguga flhD promootori piirkonnas positsioonides -262 kuni -236.

Sekveneerimine näitas, et RcsB-ga seondumispiirkonnad Ecc-s omavad sarnast järjestust, järjestustele, mis esinevad RcsAB-box’ides E. coli-s (Joonis 8).

Joonis 8. RcsB seondumispiirkonnad e. RcsAB-box’id. Hallid taustad tähendavad mida?

Antud töö tulemused tõestavad, et RcsB valgu otsesteks sihtmärkideks Ecc-s on rprA ja flhD geenide promootorpiirkonnad.
Minu töö oli tähtis mitte üksnes RcsB sihtmärkide leidmiseks vaid oli ka ettevalmistus hilisemate tööde jaoks. Järgmiseks ülesandeks on leida FlhD valgu seondumise sihtmärke ja kuidas selle valgu mõju jõuab taimeraku kesti lagundavate ensüümideni. Samuti oleks vaja välja selgitada, kuidas on taimeraku kesti lagundavate ensüümide ekspressioon FlhD valgu poolt reguleeritud.
KOKKUVÕTE

Kuna Rcs süsteem mõjutab suurel hulgul erinevaid geene ja fenotüüpe siis peab Rcs süsteem olema väga täpselt reguleeritud. Rcs süsteemi komponentide ekspressiooni ja aktiivsuse regulatsioon vajab veel edasist uurimist, et selle süsteemi rolli *Erwinia carotovora* alaml. *carotovora*-s täielikult mõista.
Isolation and purification of RcsB and FlhD proteins from plant pathogen *Erwinia carotovora* subsp. *carotovora*.

Erki Sala

SUMMARY

Erwinia carotovora subsp. *carotovora* produces an array of extracellular proteins including plant cell wall-degrading enzymes and Harpin, an effector responsible for eliciting hypersensitive reaction. Those exoproteins are regulated by two-component regulatory systems like Rcs phosphorelay.

Rcs two-component regulatory system plays a critical roles in regulating gene expression in bacteria. Environmental signals are transmitted to RcsC in which phosphate travels from the histidine kinase domain in RcsC to a response regulator domain in the same protein, from there to a phosphotransfer protein RcsD, which in turn transfers phosphate to a conserved aspartate on a response regulator RcsB. Phosphorylation and dephosphorylation of the response regulator change the activity of this protein, frequently by modulating its ability to bind to DNA and act as a regulator of transcription.

In this study we create two constructs which enables us to express proteins RcsB and FlhD with 6 His-tag and we explain the purification process of these proteins. The second part of the study shows RcsB binding on *flhD* and *rprA* genes.
Kasutatud kirjandus

