MARGUS PUTKU

UUS POLÜMORFNE \textit{ALUYB8} HÜPERTENSIOONI KANDIDAATGEENIS \textit{WNK1}:
LEVIK NING MÕJU GEENI FUNKTSIOONILE

Magistritöö

Juhendaja prof. Maris Laan Ph.D.

TARTU 2008
SISUKORD

KASUTATUD LÜHENDID .. 4
SISSEJUHATUS .. 6
1. KIRJANDUSE ÜLEVAADE ... 7
 1.1 Essentsiaalne hüpertensioon (EHT) .. 7
 1.1.1 Hüpertensiooni (HT) monogeensed pärilikud vormid ... 8
 1.1.2 Essentsiaalne hüpertensioon kui komplekshaigus ... 8
 1.1.3 Essentsiaalse hüpertensiooni kandidaatgeenide tuvastamine 10
 1.2 WNK1 kui essentsiaalse hüpertensiooni kandidaatgeen .. 12
 1.2.1 WNK geeniperekonna üldiseloomustus .. 12
 1.2.2 WNK1 geeni funktsioonid .. 14
 1.2.3 Pärilik hüpertensiooni vorm pseuduhüpoaldosteronism tüüp II (PHAII) 17
 1.2.4 WNK1 ja essentsiaalne hüpertensioon ... 18
2. TÖÖ EESMÄRGID JA ÜLESEHITUS .. 20
3. MATERJAL JA METOODIKA ... 21
 3.1 Alu insertsiooni sisaldava piirkonna amplifikatsioon .. 21
 3.2 Alu insertsiooni tuvastamine primaatidel ja WNK1 10.-11. eksoni resekveneerimine
 inimesel ja šimpansil ... 22
 3.2.1 Ekson 10-11 amplifikatsioon ja resekveneerimine ... 22
 3.3 AluYb8 insertsiooni jaotuvus erinevates populatsioonides ... 25
 3.4 Assotsiatsiooniuuringud .. 26
 3.4.1 Assotsiatsiooniuuringusse kaasatud indiviidid ... 26
 3.4.2 Statistiline analüüs ... 28
 3.5 Alu insertsiooni funktsionaalsed uuringud ... 29
 3.5.1 RNA eraldamine ja cDNA süntees ... 29
 3.5.2 Funktsionaalseteks uuringuteks kasutatud praimerite disain 30
 3.5.3 Erinevate splaiissvormide ja referentsgeenide amplifikatsioon 30
 3.5.4 Ekspressiooniuuring GeneScan meetodiga ... 32
4. TULEMUSED ..33
 4.1 Alu insertsiooni inimesespetsiifilisus ja WNK1 10.-11. eksoni konserveeritus33
 4.2 AluYb8 insertsiooni jaotuvus erinevates populatsioonides34
 4.3 AluYb8 assotsiatsioonianalüüs vererõhu ja biokeemia markeritega ning juht-
 kontroll uuring..36
 4.4 AluYb8 insertsiooni mõju geeniekspressioonile..40
5. ARUTELU ..44
 5.1 Alu elemendid ja polümorfsed Alu-d populatsioonigeneetikas44
 5.2 Alu insertsiooni mõju genoomi funktsioonile ja seos komplekshaigustega.......45
 5.3 WNK1 variantide assotsiatsioon vererõhu taseme ja essentsiaalse
 hüpertensiooniga...46
 5.4 Alternatiivse splaissingu roll geeniekspressioonis..47
KOKKUVÕTE..49
SUMMARY ..50
TÄNUAVALDUSED ...51
KASUTATUD KIRJANDUS ...52
KASUTATUD VEEBIAADRESSID ..60
LISAD...61
KASUTATUD LÜHENDID

6-FAM – 6-karboksüfluorestsiin
ATP – adenosiintrifosfaat
BLAST – Basic Local Alignment Search Tool
BMI – kehamassi indeks (Body Mass Index)
bp – aluspaar (base pair)
DEPC – dietüülpürokarbonaat
DMSO – dimetüül sulfoksiid
dNTP – desoksünukleosiidtrifosfaat
dT – desoksütümidiin
DTT – diiotreitool
DVR – diastoolne vererõhk
EDTA – etüleendiamiintetraatsetaat
EHT – essentsiaalne hüpertensioon
ENaC – epiteliaalne Na⁺ kanal
ExoI – eksaonukleaas I
F – Forward
GAPDH – glütseeraldehüüd-3-fosfaadi dehüdrogenaas
GFR – glomerulaarse filtratsiooni tase (Glomerular Filtration Rate)
HDL – kõrge tihedusega lipoproteiin (High-Density Lipoprotein)
HEX – 6-karboksühkeksafluorestsiin
HT – hüpertensioon
kb – tuhat aluspaari
KCC3 – K-Cl-kotransporter 3
kDa – tuhat Daltonit
KS-WNK1 – neeruspetsiifiline lühike WNK1 vorm
LDL – madala tihedusega lipoproteiin (Low-Density Lipoprotein)
LRT – tõepära suhte test (Likelihood Ratio Test)
L-WNK1 – pikk WNK1 vorm
M-MuLV – moloney murine leukemia virus
NCBI – National Center for Biotechnology Information
NCC – Na⁺-Cl⁻ kotransporter
NKCC – Na-K-2Cl-kotransporter
OSR1 – (Oxidative Stress Response kinase 1)
PHAIi – pseudohüpoaldosteronism tüüp 2
R – Reverse
rcf – (relative centrifugal force)
RAAS – reniin-angiotensiin-aldosteroon-süsteem
RFLP – restriktsioonifrangmendi pikkuse polümorfism (Restriction Fragment Length Polymorphism)
RPII – RNA polümeraas II
sAP – kreveti aluseline fosfataas (shrimp Alkine Phosphatase)
SNP – ühenukleotiidne polümorfism (Single Nucleotide Polymorphism)
SPAK – (STE20/SPS1-related Proline/Alanine-rich Kinase)
STE20 – stressiga seotud kinaasid (stress-related kinases)
SVR – süstoolne vererõhk
TBE – Tris-boorhape-EDTA
TET – 5´tetraklorofluorestsiin
Tris – trishüdroksümetüülaminometaan
U – ühik (Unit)
WNK – ilma lüsiinita (K) (With No K)
Hüpertensioon ja sellega kaasnevate paljude haiguste riski suurenemine on tänapäeval laialt levinud probleem, mõjutades industrialiseerunud ühiskondades 25% elanikkonnast. Progress geneetikas ja meditsiinis on avanud ukse uutele teadmistele haiguse põhjuste paremaks mõistmiseks ning andnud efektiivsemad vahendid probleemiga võitlemiseks. Lisaks keskkonnast lähtuvate vererõhutiheduse osalevatele paljudele faktoritele on haiguse tekkes ja kulus oluline roll täita ka geenidel. Hüpertensiooni geneetilise komponenti väljaselgitamine aitab mõista haiguse olemust molekulaarsel tasemel ja loob suurepärased eeldused tõhusamate ravimite väljatöötamiseks.

Antud töö on osa suuremast projektist, mille eesmärgiks on uurida inimese hüpertensiooni geneetilist tausta.

Kirjanduse ülevaate esimese osas tutvustatakse hüpertensiooni olemust ja klassifikseerimist, loetletakse seni tuntud kõrgvererõhutihedus monogeensed pärilikud vormid ning kirjeldatakse hüpertensiooni kui komplekshaigust. Samuti antakse õõhüleevaade erinevatest lähememisviisidest haiguse kandidaatgeenide tuvastamiseks ning tuuakse välja siiani tehtud olulised avastused. Kirjanduse ülevaate teises osas tutvustatakse WNK geeniperekonda, antakse põhjalik ülevaade siiani tuvastatud WNK1 geeni funktsioonide kohta ning selgitatakse WNK1 seost vererõhu regulatsiooni ja hüpertensiooniga.

Töö praktilise osa eesmärgiks oli välja selgitada WNK1 10. intronis paikneva uue polümorfose AluYb8 seos vererõhuga ja võimalik mõju geeni alternatiivsete vormide ekspressioonile. Samuti tehti kindlaks WNK1 10. introni ja sellega piirnevate eksonite konservedeini inimese ja šimpansi vahel ning uuriti konkreetse AluYb8 elemendi jaotuvust erinevates Euroopa, Aasia ja Aafrika populatsioonides.
1. KIRJANDUSE ÜLEVAADE

1.1 Essentsiaalne hüpertensioon (EHT)

Hüpertensiooni määratletakse kui haiguslikku seisundit, kus inimese süstoolne ja
diastoolne vererõhk püsivad puhkeseisundis järjepidevalt kõrgemal kui 140 mmHg ja
90 mmHg. Vastavalt vererõhu väärtustele jagatakse uuema klassifikatsiooni järgi
seisund nelja klassi (tabel 1) (VII JNC raport, 2004).

Kõrgenenud vererõhk mõjutab kaasaegses ühiskonnas umbes 25% elanikkonnast
ja on peamine riskifaktor paljudele laialt levinud haigustele nagu südame isheemiatõbi,
infarkt, kongestiivne südamepuudulikkus ning neerude funktsiooni kahjustus (Lifton jt.,
hüpertensioon ning on pakutud, et haigus on otseselt seotud 7,1 miljoni inimese
surmaga aastas.

Olenevalt haiguse tekkepõhjusest võib hüpertensiooni jagada kaheks. EHT
peetakse hüpertensiooni vormiks, millel puudub selgelt määratletud põhjus. See
tähendab, et haiguslikud nähud ei kaasne koos mõne teis e haigusega. EHT moodustab
90-95% kõigist hüpertensiooni juhtudest. Sekundaarse hüpertensiooni puhul on
kõrgenenud vererõhk tingitud mõnest muust haigusest nagu primaarne
hüperaldosteronism, Cushing’i sündroom, neuroendokriinne kasvaja ja neeruhai gus või
kaasneb kõrgem vererõhk mõne ravimi kõrvalmõjuna (Binder, 2006).

Tabel 1. Hüpertensiooni klassifikatsiooni vererõhu väärtuste alusel (VII JNC raport,
2004).

<table>
<thead>
<tr>
<th>Klass</th>
<th>SVR (mmHg)</th>
<th>DVR (mmHg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normaalne</td>
<td><120</td>
<td><80</td>
</tr>
<tr>
<td>Prehüpertensioon</td>
<td>120-139</td>
<td>80-89</td>
</tr>
<tr>
<td>I astme hüpertensioon</td>
<td>140-159</td>
<td>90-99</td>
</tr>
<tr>
<td>II astme hüpertensioon</td>
<td>≥160</td>
<td>≥100</td>
</tr>
</tbody>
</table>

SVR – süstoolne vererõhk; DVR – diastoolne vererõhk
1.1.1 Hüpertensiooni (HT) monogeensed pärilikud vormid

Tänä viimase 15 aasta jooksul toimunud progressile genoomikas ja proteoomikas on kindlaks tehtud paljude pärilike hüpertensiooni vormide geneetiline taust (tabel 2) (Staessen jt., 2003). Praeguseks väljaselgitatud mehhanismiga monogeenseid HT vorme iseloomustavad kaks tunnust: esiteks kõigi vormide funktionaalseks tagajärjeks on suurenunud Na⁺ ionide reabsorbsioon distaalses nefronis, teiseks plasma reniini aktiivsus on alati supresseeritud (Vehaskari, 2007). Kuigi monogeensed HT vormid moodustavad vaid 0,5% kõigist HT juhtudest (Kristjansson jt., 2002) on nendega seotud geenide uurimine tähtis avastamaks uusi vererõhu kontrolli eest vastutavaid geenid ja regulatsioonimehhanisme (Garcia jt., 2003).

1.1.2 Essentsiaalne hüpertensioon kui komplekshaigus

Keskkonnafaktoritest panustavad vererõhu reguleerimisse enim inimese elustiil, toitumine, liigne soola, loomsete rasvade ja alkoholi tarbimine, suitsetamine ning stress (Gong ja Hubner, 2006). Elustiili muutmisel on võimalik saavutada positiivne mõju vererõhu alanemisse ja kardiovaskulaarse riski vähemisse (Staessen jt., 2003). Graudal jt., 1998 on näidanud, et langetades päevast soola tarbimist kuue grammi võrra alandab hüpertoonikutel süstoolset vererõhku 3,7 mmHg ja diastoolset 0,9 mmHg võrra. Staessen jt., 1989 omakorda on näidanud, et kehakaalu langetamine ühe kilogrammi võrra alandab süstoolset rõhku 1,6 ja diastoolset 1,3 mmHg võrra.
Tabel 2. Hüpertensiooni pärilikud monogeensed vormid.

<table>
<thead>
<tr>
<th>Sündroom</th>
<th>Geen</th>
<th>Haiguse mehhanism</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Liddle sündroom (Shimkets jt., 1994)</td>
<td>$SCNN1\beta$</td>
<td>ENaC aktiivsuse tõus</td>
</tr>
<tr>
<td>2. Gordoni sündroom e. PHAII (Wilson jt., 2001)</td>
<td>$SCNN1\gamma$</td>
<td>NCC ja ENaC aktivatsioon</td>
</tr>
<tr>
<td>3. Mineraalkortikoidide liig (Wilson jt., 1995)</td>
<td>$WNK1$</td>
<td>NCC ja ENaC aktivatsioon</td>
</tr>
<tr>
<td>4. Rasedusega ägenev hüpertensioon (Geller jt., 2000)</td>
<td>$WNK4$</td>
<td>Kortisooli konverneerimine</td>
</tr>
<tr>
<td>5. Glükokortikoididega ravitav aldosteronism e. perekondlik hüperaldosteronism tüüp I (Lifton jt., 1992)</td>
<td>$HSD11\beta2$</td>
<td>Kortisooli konverneerimine</td>
</tr>
<tr>
<td>8. Hüpertensioon brahhüdaktüüliaga (Schuster jt., 1996)</td>
<td>$NR3C2$</td>
<td>Mineraalkortikoidi retseptori aktiveerumine, mis põhjustab pidevalt stimuleeritud Na reabsorbsiooni</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1.1.3 Essentsiaalse hüpertensiooni kandidaatgeenide tuvastamine

Komplekshaiguste nagu EHT geneetilise komponendi uurimiseks on sobivamaks meetodiks assotsiatsiooniuvuringud, kus võrreldakse geneetiliste markerite (peamiselt SNP-de) sagedusi patsientide ja tervete kontrollide vahel. Selle meetodi puhul on oluline patsiendi- ja kontrollgrupi täpne määramise (Cardon ja Bell, 2001). Assotsiatsioon alleeli ja fenotüübi vahel võib esineda kolmel juhul: uuritav marker on ise otseselt seotud fenotüübiga; marker on ahelduse tasakaalustamatuse tõttu seotud fenotüüpi põhjustava SNP-ga; seos fenotüübi ja genotüübi vahel on juhuslik (Agarwal jt., 2005). Viimastel aastatel on tänäänähtud genotüüpiseerimismeetoditele läbi viidud suur hulk assotsiatsiooniuvuringuid, mille tulemusena on näidatud rohkem kui 60 geeni seos vererõhuga (Binder, 2006). Paljud uurimused on tuvastanud seoseid renin-angiotensiin-aldosteroon-süsteemi (RAAS) ja EHT vahel (Gong ja Hubner, 2006). ACE (kodeerib angiotensiini konverteerivat ensüümi) ja AGT (kodeerib angiotensiinogeneeni)

Näriliste abil EHT kandidaatgeenide tuvastamiseks aheldusanalüüsisiga kasutatakse traditsiooniliselt hüpertensiivsete ja normaalse vererõhuga liinide ristandeid, et leida vererõhu kontrolliga seotud lookusi (Mein jt., 2004). Aheldusanalüüsisiga on selliseid lookusi tuvastatud enamikest roti kromosoomidest, kuid probleemiks sellise meetodi puhul on leitud lookuste suur ulatus, mis raskendab konkreetsete geenide täpsemat identifitseerimist (Rapp, 2000).
1.2 WNK1 kui essentsiaalse hüpertensiooni kandidaatgeen

1.2.1 WNK geeniperekonna üldiseloomustus

Inimese geenid WNK2 ja WNK3 on tekkinud arvatavasti WNK1 duplitseerumise tagajärjel (Holden jt., 2004). WNK3 katab genoomis 165 kb ja koosneb 24 eksonist. WNK3-i esineb kaks isovormi tänu 18. ja 22. eksoni alternatiivsele splaissingule. WNK3 ekspresseerub väga madalal tasemel paljudes, eriti lootelistes kudede s, kuid 18. eksoni splaissingu vormi on tuvastatud vaid ajus.

![Diagram](image_url)

Joonis 1. Gamba, 2005 järgi. WNK valkude linearne struktuurialne organisatsioon. Hallid ristkülikud kujutavad valgu kinaasset domeeni, viirutatud ristkülikud autoinhibitoorset ja mustad (C1 ja C2) keerd-keerd domeene. Joonisel on kujutatud ka WNK1 neeruspetsiifiline vorm, millel puudub kinaasne aktiivsus. WNK4-l on näidatud muutused aminohappelises järjestuses, mis põhjustavad pseudohüpoaldosteronism II.
1.2.2 WNK1 geni funktsioonid

Inimese WNK1 geni täispikk valk koosneb 2382 aminohappe jäägist (Verissimo ja Jordan, 2001) ning selle suurusest (251 kDa) lähtuvalt on ennustatud, et see võib seonduda kuni 50 valguga. Seega WNK1 genil võib olla väga palju funktsioone, millest siiani on kindlaks tehtud vaid väikene osa (Xu jt., 2005).

Kuna teatud mutatsioonid WNK1 genis põhjustavad hüpertensiooni monogeenset vormi PHAII (vt. peatükk 1.2.3), on siiani rohkem tähelepanu pööratud geeni nendele funktsioonidele, mille kaudu toimub soolade transpordi reguleerimine rakus ja läbi selle vererõhu regulatsioon. Enamus funktsionaalsetest uueringutest põhinevad Xenopus laevis ootsüütide või epiteelrakkude näitel (Zagorska jt., 2007).

Xenopus laevis ootsüütides on tähelepanu pööratud, et WNK1 suurendab kaudsalt tiasiidtundlikku Na-Cl kotransporteri (NCC) aktiivsust. Otseselt seondub WNK1 WNK4-ga, inhibeerib seda ja WNK4 omakorda surub maha NCC aktiivsust, takistades NCC transporti plasmamembraanile (Yang jt., 2003). Subramanya jt., 2006 uurisid WNK1 ja WNK4 seoseid täpsemalt ning näitasid, et neeruspetsiifiline lühike WNK1 vorm (KS-WNK1), mis on alternatiivsest eksonist 4a algava transkripti produkt, ei oma otsest efekti WNK4-le, vaid toimib kui dominantne negatiivne regulaator pikale WNK1 vormile (L-WNK1). KS-WNK1 inhibeerib L-WNK1 kinaasset aktiivsust, mistõttu L-WNK1 koatab võime inhibeerida WNK4, mis omakorda surub maha NCC tööd, viies NCC aktiivsuse suurenemiseni (joonis 2).

L-WNK1 seondub ja fosforüleerib sünaptotagmin 2 (Syt2), mis mõjutab Ca$^{2+}$ seoslist Syt2 ja fosfolipidiisesiikulite vahelist interaktsiooni. Sellise mehhanismi abil on WNK1 võimeline reguleerima proteiinide liikumist plasmamembrani ja vesiikulite vahel. Kui mõjutada selliste membraanivalkude liiklust plasmamembranile, mis vastutavad ioonide transpordi eest, võib see muuta raku ioonset tasakaalu. (Lee jt., 2004).

Hiljuti on Richardson jt., 2008 näidanud, et SPAK ja OSR1 kinaasid fosforüleerivad ja aktiveerivad ka tiasiidtundliku Na-Cl kotransporterit NCC, mis tähendab, et L-WNK1 võib ka WNK4-st sõltumata NCC-d aktiveerida.

PHAII haigetel esineva kloriidi oonide suurenenud paratsellulaarse reabsorbsiooni põhjuste uurimisega tegelenud Ohta jt., 2006, näitasid, et WNK1 üleekspressioon suurendab Cl⁻ rakkudevahelist läbilaskvust ning fosforüleerib tiheliidustes esinevaid claudin-4 valke MDCKII rakuliinis.
Sun jt., 2006 kirjeldasid WNK1 rolli hiire neuraalsetes tüvirakkudes (C17.2 rakuliin) ning näitasid, et L-WNK1 omab tähtsat rolli rakkude prolifereerumisel, migreerumisel ja diferentseerumisel. WNK1 ekspressiooni blokeerimine muudab nimetatud rakuliini morfoloogiat, takistades rakkude küpsemist, migreerumist ja pidurdab kasvu.

WNK1 rolli embrüonaalses arengus on näidanud ka Zambrowicz jt., 2003, kes „gene trapping“ meetodiga konstrueerisid Wnk1 mutatsiooniga hiireliini. Hiired, kes olid homosügootsed tekitatud mutatsiooni suhtes surid embrüonaalse arengu käigus enne 13 päeva vanuseks saamist. Heterosügootsetel hiirtel tuvastati madalam vererõhk (keskmiselt 12,2 mmHg) võrreldes metsiktüüpi hiirtega, mille arvatavasti põhjustas madalam Wnk1 geeni mRNA tase neeru, südame ja tüümuse rakkudes, sest patoloogilisi muutusi neerudes ei tuvastatud.

1.2.3 Pärilik hüpertensiooni vorm pseuduhüpoaldosteronism tüüp II (PHAIi)

WNK1 ja WNK4 on seotud harva esineva mendeliaalselt päranduva autosomaalse monogeense haiguse PHAIi ehk Gordoni sündroomi tekkega. Haigust põdevatel inimestel esineb kõrgenev vererõhk ja hüperkaleemia ehk kõrge kaaliumi sisaldus vereseerumis (Wilson jt., 2001). Hüperkaleemiat PHAIi patsientidel seletavad eelnevalt kirjeldatud Wade jt., 2006 ja He jt., 2007 avastused. Patsientide peal läbiviidud kliinilistele uuringutele põhines on PHAIi peamisteks patofüsioloogilisteks mehhanismideks suurenenud naatriumi reabsorbtsoon läbi tiasiidtundliku NCC, mis tõstab vererõhku; suurenenud Cl⁻ ionide paratsellulaarne reabsorbtsoon; metaboolne atsidoos, mida põhjustab H⁺ ionide sekretsiioni oluline vähinemine (Gamba, 2005).

WNK1 ja WNK4 poolt kodeeritavad valgud lokaliseeruvad neerus distaalsete nefronite kortikaalsetes kogumistorukestes ja distaalsetes vääntorukestes, mis mängivad olulist rolli Na⁺, Cl⁻, K⁺, vee ja pH homeostaasis. PHAIi-te põhjustavad mutatsioonid WNK1 ja WNK4 geenis. WNK1 esimeses intronis olevad suured (21 ja 42 kb) deletsioonid (joonis 4) põhjustavad geeniekspressiooni viiekkordset tõusu. WNK4-s on

1.2.4 WNK1 ja essentsiaalne hüpertensioon

Mutatsioonid WNK1 geenis põhjustavad HT monogeenset vormi PHAII, mistõttu on see sobilik ka EHT kandidaatgeeniks. Funktsionaalsed WNK1 geenivariandid, mis muudavad geeniekspressiooni, võivad läbi erinevate funktsioonide mõjutada vererõhku. Siiski arvatakse, et üldlevinud WNK1 variandid ei muuda inimese vererõhku rohkem kui mõne millimeetrit võrra elavhõbeda sambal (Newhouse jt., 2005).

Kokubo jt., 2004 tuvastasid WNK1, WNK4 ja NCC kodeerivatest aladest 108 ühenukleotiidset polümorfismi (SNP), millest 21 genotüüpiseeriti 1818 jaapanlasel (771 hüpertensiooni patsienti ja 1047 kontrolli). Assotsiatsioon vererõhuga näidati ühe WNK4 SNP-ga, mille puhul meestel, kes kandsid minoorset alleeli oli süstoolne
vererõhk 3,1 mmHg võrra kõrgem. WNK1 ja NCC SNP-de ja vererõhu vahelist assotsiatsiooni ei tuvastatud.

Uuritud on ka WNK1 variantide ja tiasiiiidureetikumide ravi seost 585 (291 Atlanta mustanahalist ja 294 Rochesteri valgenahalist) hüdroklorotiasidi saaval essentsiaalse hübertensiooni patsiendil. Tuvastati kolm polümorfismi, mille abil oli ravi saanud indiviididel võimalik 2-4% varieeruvusega ennustada ravi mõju süstolise ja diastoolise vererõhu väärustele. SNP-d paiknesid geenis esimeses ja teises intronis ning kaheksandas eksonis (Turner jt., 2005).

Newhouse jt., 2005 viisid läbi assotsiatsiooniuuringu, kasutades 712 BRIGHT (British Genetics of Hypertension) uuringu hübertensiiivset perekonda. Assotsiatsiooni hübertensiooni ja 19 WNK1 polümorfismi ning kaheksast tagSNP-st moodustatud haplotüübi vahel ei leitud. Siiski näidati WNK1 promootori lähedal paikneva SNP seos süstolise ja diastoolise vererõhuga ning ühe üldlevinud haplotüübi (sagedus 0,108) ja süстolise vererõhu vahel.

2. TÖÖ EESMÄRGID JA ÜLESEHITUS

Magistritöö eesmärgiks oli viia läbi bakalaureuse astmes WNK1 10. intronis tuvastatud uue polümorfse AluYb8 insertsiooni detailsem analüüs, selgitada välja Alu jaotuvus erinevates populatsioonides ja teha kindlaks selle võimalik seos vererõhuga ning mõju geeni funktsioonile. Töö ülesehitus on esitatud skeemina juonisel 5.

3. MATERJAL JA METOODIKA

3.1 Alu insertsiooni sisaldava piirkonna amplifikatsioon

PCR reaksioonisegu lõppmahus 15 µl sisaldas 1,5 µl 10X reaksioonipuhvrit [750 mM Tris-HCl (pH 8,8 25º juures), 200mM (NH₄)₂SO₄ ja 0,1% Tween 20], 1,5 µl 25 mM MgCl₂, ja 1,5 µl 2,5 mM dNTP segu (Fermentas Life Sciences, Vilnius, Leedu) 0,375 U FIREPol® Taq DNA polümeraasi (Solis BioDyne, Tartu, Eesti) 0,4 µl 10 pmol/µl F ja R praimereid (Metabion) ja 30 ng genoomset DNA-d.

Sünteesirectsioonid viidi läbi GeneAmp PCR System 2700 (Applied Biosystems) masinatega järgmistel tingimustel:

<table>
<thead>
<tr>
<th>Algne denaturatsioon</th>
<th>95°C 4 min</th>
</tr>
</thead>
<tbody>
<tr>
<td>Denaturatsioon</td>
<td>95°C 20 sek</td>
</tr>
<tr>
<td>Praimerite seondumine</td>
<td>68°C 30 sek</td>
</tr>
<tr>
<td>Ekstensioon</td>
<td>72°C 1 min 20 sek</td>
</tr>
</tbody>
</table>

10 tsüklit, temperatuuri
langus 1°C tsükli kohta

<table>
<thead>
<tr>
<th>Denaturatsioon</th>
<th>95°C 20 sek</th>
</tr>
</thead>
<tbody>
<tr>
<td>Praimerite seondumine</td>
<td>60°C 30 sek</td>
</tr>
<tr>
<td>Ekstensioon</td>
<td>72°C 1 min 20 sek</td>
</tr>
</tbody>
</table>

12 tsüklit

Denaturatsioon 95°C 20 sek
Praimerite seondumine 58°C 30 sek 12 tsüklit
Ekstensioon 72°C 1 min 20 sek
Inkubatsioon 72°C 7 min
Säilitamine 4°C

Alu insertsiooni olemasolu kontrolliti 1% agaroosgeelil TBE-s.

3.2 _Alu insertsiooni tuvastamine primaatidel ja WNK1 10.-11. eksoni resekveneerimine inimesel ja šimpansil_

3.2.1 Ekson 10-11 amplifikatsioon ja resekveneerimine

PCR ja sekveneerimispraimerid disainiti programmiga Primer3 (Rozen ja Skaletsky, 2000). Praimerite järjestused on toodud lisas 1 osas B.
Esmalt amplifitseeriti WNK1 genoomne piirkond, mis sisaldas ekseside 10-11, kasutades praimereid WNK1_seq1_F (kasutati ka sekveneerimisel) ja WNK1_Seq_R. PCR reaktsioonisegu lõppmahus 30 µl sisaldas 3 µl 10X Long reaktsioonipuhvrit koos 15 mM MgCl₂, 3 µl 2,5 mM dNTP segu, 0,9 µl DMSO ja 1,25 U DNA polümeraasi Long PCR Enzyme Mix (Fermentas), 1 µl 10 pmol/µl F ja R praimereid (Metabion) ja 150 ng genoomset DNA-d. PCR viidi läbi GeneAmp PCR System 2700 (Applied Biosystems) masinatega järgmistel tingimustel:

<table>
<thead>
<tr>
<th>Tüüp</th>
<th>Temperatuur</th>
<th>Aeg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algne denaturatsioon</td>
<td>95°C</td>
<td>3 min</td>
</tr>
<tr>
<td>Denaturatsioon</td>
<td>95°C</td>
<td>20 sek</td>
</tr>
<tr>
<td>Praimerite seondumine</td>
<td>58°C</td>
<td>30 sek</td>
</tr>
<tr>
<td>Ekstensioon</td>
<td>68°C</td>
<td>2 min</td>
</tr>
<tr>
<td>Denaturatsioon</td>
<td>95°C</td>
<td>20 sek</td>
</tr>
<tr>
<td>Praimerite seondumine</td>
<td>56°C</td>
<td>30 sek</td>
</tr>
<tr>
<td>Ekstensioon</td>
<td>68°C ekstensiooni pikenemine</td>
<td>1 sek tsükli kohta</td>
</tr>
<tr>
<td>Inkubatsioon</td>
<td>68°C</td>
<td>10 min</td>
</tr>
<tr>
<td>Säilitamine</td>
<td>4°C</td>
<td></td>
</tr>
</tbody>
</table>

Kasutamata jäänud praimerite ja desoksünukleotiide eemaldamiseks teostati PCR produktide töötlus. Selleks kasutati eksonukleaaas I-te (ExoI) ja kreveti aluselist fosfataasi (sAP). Reaktsioonisegu valmistati suhtes 0,5 osa ExoI-te (20U/µl, MBI Fermentas) ja 9,5 osa sAP-i (1U/µl, MBI Fermentas). Olemasolevatele PCR produktidele lisati 1,5 µl ensüümide segu ning ensüümtoötluse reaktsioonid viidi läbi GeneAmp PCR System 2700 (Applied Biosystems) masinatega järgmistel tingimustel:

<table>
<thead>
<tr>
<th>Tüüp</th>
<th>Temperatuur</th>
<th>Aeg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inkubeerimine</td>
<td>37°C</td>
<td>20 min</td>
</tr>
<tr>
<td>Inaktiveerimine</td>
<td>80°C</td>
<td>15 min</td>
</tr>
<tr>
<td>Säilitamine</td>
<td>4°C</td>
<td></td>
</tr>
</tbody>
</table>
Reaktsioonisegu lõppmahus 10 µl sisaldas 1,3 µl puhastatud PCR produkti, 1,8 µl 5X BigDye Terminator v3.1 lahjenduspuhvrit, 0,4 µl sekveneerimise premix´i BigDye RR-100 mix v3.1, 1 µl 5 pmol/µl praimerit ja 5,5 µl ddH2O. Reaktsioonid viidi läbi ABI PCR (Applied Biosystems GeneAmp PCR System 2700) masinatega järgmistel tingimustel:

- **Algine denaturatsioon**: 96°C 1 min
- **Denaturatsioon**: 96°C 10 sek
- **Praimerite seondumine**: 50°C 5 sek 25 tsüklit
- **Ekstensioon**: 60°C 4 min
- **Inkubatsioon**: 10°C 7 min
- **Säilitamine**: 10°C

Järgnevalt PCR produktid sadestati. Igale proovile (10µl) lisati 1,5 µl ammoniumatsetaadi ja dekstraani segu (1 µl ammoniumatsetaadi puhvrit [10M (pH>8)/EDTA (250mM)] ja 0,5 µl dekstraani). Produktid segati hoolikalt läbi ning igale proovile lisati 30 µl 96% külma etanooli ja asetati 15 minutiks -20°C juurde sadenema. Proovid tsentrifuugiti 20 min. 16100 rcf (relative centrifugal force) juures peale mida eemaldati supernatant. Igale proovile lisati 200 µl külma 70% etanooli ning tsentrifuugiti 10 min. 16100 rcf juures. Eemaldati hoolikalt supernatant ja proove kuivatati 10-15 minutit 37°C juures. Peale etanooli aurustumist lahusati proovid 10 µl 70% formamiidis (AppliChem GmbH, Saksaamaa).

Proovid sekveneeriti Applied BioSystems 3730xl DNA Analyser kapillaarskveneatoriga. Sekveneeritud järjestuste kvaliteeti kontrolliti programmiga BioEdit Sequence Alignment Editor (Hall T., Department of Microbiology, North Carolina State University).
3.3 AluYb8 insertsiooni jaotuvus erinevates populatsioonides

Alu insertsiooni jaotuvus tehti kindlaks viies Euroopa, viies Aasia ja kaheksas Aafrika populatsioonis.

Euroopast olid esindatud eestlased (n=1140) [prof. Maris Laane eestvedamisel kogutud DNA proovid koostöös Põhja-Eesti Verekeskusega ja Tartu Ülikooli (TÜ) Kliinikumi Verekeskusega ning TÜ Kliinikumi (dots. Tiina Ristimäe, dr. Gudrun Veldre ja dots. Mai Rosenberg) ja Põhja-Eesti Regionaalhaiglaga (prof. Margus Viigimaa ja dr. Aleksei Teor)], tšehhid (n=383) [Dr. Viktor Kozich (Charles University First Faculty of Medicine, Institute of Metabolic Disease)], baskid (n=50), kataloonlased (n=41) [prof. David Comas ja prof Jaume Pertranpetit (Universitat Pompeu Fabra, Unitat de Biologia Evolutiva)] ja CEPH/Utah perekondade proovid (n=30) (http://ccr.coriell.org).

Aasia populatsioonide hulka kuulusid hannid (n=25) [HGDP-CEPH Human Genome Diversity Cell Line Panel (http://www.cephb.fr/HGDP-CEPH-Panel)], korealased (n=43) [Dr. Woo Chul Moon (Good-Gene Inc. Seoul, Korea)], tatarlased (n=47), baškiirid (n=47) [Elza Khusnudtinova (Ufa Research Center, Russian Academy of Sciences)] ja Hispaanias elavad mustlased (n=50) (David Comas ja Jaume Pertranpetit).

Aafrikast kasutati töös mandenkaalude (n=24) (HGDP-CEPH), Lääne-Sahaara elanike saharaavide (n=50), tansaanlaste (n=17), bantu keelt rääkivad gabonlaste (n=50), pügmeede (n=50), tuneeslaste (n=48), alžeerlaste (n=48) ja viie erineva Maroko valimi (kokku n=84) DNA proove (David Comas ja Jaume Pertranpetit).

3.4 Assotsiatsiooniuuringud

Assotsiatsiooniuuringu võib käesolevas töös jagada kolmeks:
1. vererõhu seos *Alu* insertsiooniga
2. juht-kontroll uuring
3. Glomerulaarse filtratsiooni taseme (GFR) ja vere seerumi biokeemia markerite seos *Alu* insertsiooniga

3.4.1 Assotsiatsiooniuuringusse kaasatud indiviidid

Tabel 3. Vererõhu ja *Alu* insertsiooni seose uurimiseks kasutatud indiviidide kirjeldus.

<table>
<thead>
<tr>
<th>Individide arv</th>
<th>Koos</th>
<th>Mehed</th>
<th>Naised</th>
</tr>
</thead>
<tbody>
<tr>
<td>Venus(^1)</td>
<td>1140</td>
<td>390</td>
<td>750</td>
</tr>
<tr>
<td>BMI</td>
<td>43,4 ± 12,1</td>
<td>41,1 ± 11,9</td>
<td>44,6 ± 12</td>
</tr>
<tr>
<td>Süstoolne vererõhk (mmHg)</td>
<td>26 ± 3,8</td>
<td>26,6 ± 3,4</td>
<td>25,7 ± 4</td>
</tr>
<tr>
<td>Diastoolne vererõhk (mmHg)</td>
<td>140,1 ± 18,4</td>
<td>143,5 ± 15,7</td>
<td>138,3 ± 19,4</td>
</tr>
<tr>
<td>Diastoolne vererõhk (mmHg)</td>
<td>86,6 ± 10,6</td>
<td>88,1 ± 10,4</td>
<td>85,8 ± 10,6</td>
</tr>
</tbody>
</table>

Keskmised väärtused ± standardhälve. \(^1\) Keskmine vanus vererõhu mõõtmise ajal
Juht-kontroll uuringus kasutatud indiviidid (tabel 4) olid samuti kogutud koostöös eespool nimetatud verekeskustega ja haiglatega. Antud uuringus olid kontrollid (n=362) määratletud kui isikud, kes ei olnud saanud antihüpertensiivseid ravimeid ning kelle süstoolse vererõhu (SVR) mediaanväärtus oli ≤130 ja diastoolse vererõhu (DVR) mediaanväärtus ≤80. Isik määrati kontrolliks ka juhul, kui kriteeriumile vastas kas ainult SVR või ainult DVR mediaanväärtus. Patsientideks (n=414) loeti isikud, kellel oli diagnoositud essentsiaalne hüpertensioon ja kes tarbisid vererõhku alandavaid ravimeid. Lisaks kaasati patsientidena uuringusse indiviidid, kelle SVR ≥160 ja DVR ≥100 juhul, kui nad ei saanud antihüpertensiivseid ravimeid või oli neil mõõdetud vererõhu näidud enne ravi algust. Sarnaselt kontrollidega kaasati ka patsiendite gruppis isikud, kes sobisid valimisse ainult SVR või DVR mediaanväärtuse järgi. Patsiendi grupist jäävad välja need, kelle BMI >35, kes põdesid diabeeti, kannatasid neerupuulikkuse all või kellel oli hüpertensioon diagnoositud hiljem kui 55 eluaastal meeste ja 65 eluaastal naiste puhul.

<table>
<thead>
<tr>
<th>Kontrollid</th>
<th>Patsiendid</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mehed</td>
</tr>
<tr>
<td></td>
<td>n</td>
</tr>
<tr>
<td>Vanus</td>
<td>35 ± 8</td>
</tr>
<tr>
<td>BMI</td>
<td>24,7 ± 2,7</td>
</tr>
</tbody>
</table>

Keskmised väärtused ± standardhälve; n – indiviidide arv; BMI – kehamassi indeks

valemite, mis arvestas inimese vanust, sugu ja rassi ning vere seerumi kreatiniini (mg/dL), uurea (mg/dL) ja albumiini (g/dL) kontsentratsiooni:

\[
\text{GFR} (\text{ml/min}/1,73\text{m}^2) = 170 \times (\text{kreatiniin})^{-0,999} \times (\text{vanus})^{-0,176} \times (\text{uurea})^{-0,17} \times (\text{albumiin})^{0,318} \\
\times (0,762 \text{ kui naine}) \times (1,18 \text{ kui mustanahaline})
\]

3.4.2 Statistiline analüüs

Assotsiatsiooniuringu statistiline analüüs viidi läbi käsurea programmiga PLINK (versioon 1.01), mis on vabalt kättesaadav internetiaadressilt http://pngu.mgh.harvard.edu/~purcell/plink/. PLINK on välja töötatud kõrgenoomi assotsiatsiooniuringute analüüsside teostamiseks (Purcell jt., 2007) ning on fokuseeritud genotüübi ja fenotüübi andmete analüüsile. Vererõhu, biokeemia markerite ja GFR-i assotsiatsiooni hindamiseks viidi läbi lineaarne regressioonanalüüs, kus kasutati aditiivset alleeliidoomisiv mudelit. Andmeid analüüsiti ka tõepära suhte testiga (LRT). Juht-kontroll uuringus kasutati aditiivset mudelit logistisel regressioonanalüüsil. Läbiviidud testides loeti statistiliselt tähendusrikkaks olulisustõenäosust p<0,05.

Kvantitatiivne analüüs viidi läbi iga indiviidi vererõhunäitude mediaanväärtustega. Lineaarne ja logistiline regressioonanalüüs viidi läbi väärtustega, mis olid kohandatud isiku sooga, kehamassi indeksiga ja erinevate vererõhu mõõtmiste vanuse mediaanväärtusega. GFR-i andmeid nimetatud parameetritega ei korrigeeritud. Tõepära suhte test ei võimaldanud sellist väärtuste korrigeerimist.

Genotüüpide vererõhu väärtuste erinevuste visualiseerimiseks karp-vurrud diagrammil kasutati statistilise analüüsi paketti R, mis on vabavarana kättesaadav veebiaadressilt http://www.r-project.org/.
3.5 *Alu* insertiooni funktsionaalsed uuringud

3.5.1 RNA eraldamine ja cDNA süntees

Uuritavate indiviidide (tabel 5) veri koguti 9 ml katsutisesse (Vacuette® K₂EDTA, Greiner Bio-One GmbH, Kremsmuenster, Austria), mis koagulandina sisaldasid EDTA-d. RNA eraldamisega jätkati võimalikult kiiresti, et vähendada RNA lagunemise tõttu tingitud saagise kadu. On näidatud, et EDTA katsutites hoitud veres mRNA kontsentratsioon väheneb aja jooksul (Rainen jt., 2002).

Leukotsüütide RNA eraldati 9 ml verest, kasutades RNA eralduskomplekti LeukoLOCK™ Total RNA Isolation System (Ambion, Inc, Austin, Texas, USA). Vastavalt protokoolile viidi läbi ka valikuline TURBO™ DNase töötlus, et degradeerida genoomne DNA. Eraldatud RNA kontsentratsioon mõõdeti aparaadiga NanoDrop® ND-1000 UV-Vis Spectrophotometer (NanoDrop Technologies, LLC, Wilmington, Delaware, USA).

cDNA süntees viidi läbi komplektiga First Strand cDNA Synthesis Kit (Fermentas Life Sciences, Vilnius, Leedu). Reaktsioonisegu lõppmahus 20 µl sisaldas järgmisi komponente: 0,5 µg RNA-d, 4 µl 5X reaktsiooni puhvrit [250 mM Tris-HCl (pH 8,3 25º juures), 250 mM KCl, 20mM MgCl₂, 50 mM DTT], 0,5 µg oligo(dT)₁₈ praimerit, 20 U ribonukleaas A inhibiitorit RiboLock™ RNase Inhibitor, 2µl 10 mM dNTP segu 40 U M-MuLV pöördtranskriptaasi ja DEPC töödeldud vett. Proove inkubeeriti algselt 5 min 70º juures, pöördtranskriptaasi reaktsioon toimus 60 min 37º juures ja reaktsioon peatati kuumutamisega 70º juures 10 min jooksul, et inakteerida pöördtranskriptaas.

<table>
<thead>
<tr>
<th>Sugu</th>
<th>Ind 1</th>
<th>Ind 2</th>
<th>Ind 3</th>
<th>Ind 4</th>
<th>Ind 5</th>
<th>Ind 6</th>
<th>Ind 7</th>
<th>Ind 8</th>
<th>Ind 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sugu</td>
<td>-/-</td>
<td>A/-</td>
<td>A/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vanus</td>
<td>M</td>
<td>M</td>
<td>N</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>42</td>
<td>27</td>
<td>29</td>
<td>25</td>
<td>22</td>
<td>45</td>
<td>47</td>
<td>63</td>
</tr>
</tbody>
</table>

Tabel 5. Geeniekspressiooniuuringusse kaasatud indiviidide iseloomustus.

-/- ilma *Alu*-ta homosügoodid; A/- *Alu*-ga heterosügoodid; A/A *Alu*-ga homosügoodid.
3.5.2 Funktsionaalseteks uuringuteks kasutatud praimerite disain

3.5.3 Erinevate splaissvormide ja referentsgeenide amplifikatsioon

Uuritavate indiviidide cDNA-ga viidi läbi PCR lõppmahus 30 µl, mis sisaldas 3µl 10X reaktsioonipuhvrit [750 mM Tris-HCl (pH 8,8 25º juures), 200mM (NH₄)₂SO₄ ja 0,1% Tween 20], 3 µl 25 mM MgCl₂, 3 µl 2,5 mM dNTP segu ja 0,75 U Taq (rekombinantne) DNA polümeraasi (Fermentas), 0,8 µl 10 pmol/µl F ja R praimereid (Metabion) ja 1 µl cDNA sünteesi produkti.
Amplifikatsioonid viidi läbi GeneAmp PCR System 2700 (Applied Biosystems) masinatega. *WNK1* kolme piirkonna ja *RPII* järjestuse amplifitseerimiseks teostati PCR järgmistel tingimustel:

<table>
<thead>
<tr>
<th></th>
<th>Temperatuur</th>
<th>Aeg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algine denaturatsioon</td>
<td>95°C</td>
<td>2 min 30 sek</td>
</tr>
<tr>
<td>Denaturatsioon</td>
<td>95°C</td>
<td>20 sek</td>
</tr>
<tr>
<td>Praimerite seondumine</td>
<td>64°C</td>
<td>30 sek</td>
</tr>
<tr>
<td>Ekstensioon</td>
<td>72°C</td>
<td>1 min 20 sek</td>
</tr>
<tr>
<td>Denaturatsioon</td>
<td>95°C</td>
<td>20 sek</td>
</tr>
<tr>
<td>Praimerite seondumine</td>
<td>54°C</td>
<td>30 sek</td>
</tr>
<tr>
<td>Ekstensioon</td>
<td>72°C</td>
<td>1 min 20 sek</td>
</tr>
<tr>
<td>Denaturatsioon</td>
<td>95°C</td>
<td>20 sek</td>
</tr>
<tr>
<td>Praimerite seondumine</td>
<td>52°C</td>
<td>30 sek</td>
</tr>
<tr>
<td>Ekstensioon</td>
<td>72°C</td>
<td>1 min 20 sek</td>
</tr>
<tr>
<td>Inkubatsioon</td>
<td>72°C</td>
<td>7 min</td>
</tr>
<tr>
<td>Säilitamine</td>
<td>4°C</td>
<td></td>
</tr>
</tbody>
</table>

10 tsüklit, temperatuuri
langus 1°C tsüklili kohta

WNK1 13 tsüklit
RPII 11 tsüklit

GAPDH järjestus amplifitseeriti järgmistel tingimustel:

<table>
<thead>
<tr>
<th></th>
<th>Temperatuur</th>
<th>Aeg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algine denaturatsioon</td>
<td>95°C</td>
<td>2 min 30 sek</td>
</tr>
<tr>
<td>Denaturatsioon</td>
<td>95°C</td>
<td>20 sek</td>
</tr>
<tr>
<td>Praimerite seondumine</td>
<td>61°C</td>
<td>30 sek</td>
</tr>
<tr>
<td>Ekstensioon</td>
<td>72°C</td>
<td>1 min</td>
</tr>
<tr>
<td>Denaturatsioon</td>
<td>95°C</td>
<td>20 sek</td>
</tr>
<tr>
<td>Praimerite seondumine</td>
<td>51°C</td>
<td>30 sek</td>
</tr>
<tr>
<td>Ekstensioon</td>
<td>72°C</td>
<td>1 min</td>
</tr>
<tr>
<td>Inkubatsioon</td>
<td>72°C</td>
<td>7 min</td>
</tr>
<tr>
<td>Säilitamine</td>
<td>4°C</td>
<td></td>
</tr>
</tbody>
</table>

10 tsüklit, temperatuuri
langus 1°C tsüklili kohta

WNK1 8 tsüklit
RPII 5 tsüklit

14 tsüklit

PCR produktide olemasolu kontrolliti elektrofoesiga 3% agaroosgeelil TBE-s.
3.5.4 Ekspressiooniuruing GeneScan meetodiga

Erinevate splaissvormide ekspressiooniurungiks kasutati semikvantitatiivset meetodit GeneScan. Ühe WNK1 uuritava piirkonna PCR produkt segati võrdses koguses (1 µl) kokku referentsgeenide GAPDH ja RPII PCR produktidega, lisati 0,25 µl fluorescentseeruva märkega pikkusmarkerit GeneScan™ 2500 TAMRA™ Size Standard ja 0,75 µl pikkusmarkeriga kaasasolevat värvit (Applied Biosystems), 1 µl 70% formamiidi (AppliChem GmbH) ja 1 µl vett. Seega kolm uuritavat WNK1 geeni piirkonda analüüsititi eraldi. Kokkusegatud ühendeid kuumutati 2 min 90º juures ja kanti 6% denatureerivale polüakrüülamidegeeli 0,5X TBE puhvris. Elektroforees viidi läbi aparaadiga ABI PRISM 373 DNA Sequencer (Applied Biosystems).

Tulemusi analüüsiti GeneScan 2.1 tarkvaraga, mis eristas geelile kantud erinevad PCR produktid pikkuse järgi. Programm esitas vastava fluorescentseeruva mägisega produkti graafikul piigina, tuues välja piigi kõrguse ja pindala, mille piik enda alla võtab. Antud töös võeti andmete analüüsil arvesse vaid piigi pindala. Iga splaissvormi suhteline ekspressioonitase arvutati kui splaissvormi piigi pindala suhe võrdlusgeeni piigi pindalasse.
4. TULEMUSED

4.1 Alu insertsiooni inimesespetsiifilisus ja WNK1 10.-11. eksoni konsserveeritus

Genotüüpiseeritud gorillal, orangutanil ja ühisteistkümnel šimpansil, AluYb8 insertsiooni WNK1 10. intronis ei tuvastatud (joonis 6). Insertsiooni puudumine uuritud primaatidel viitab konkreetse AluYb8 elemendi inimesespetsiifilisusele.

Joonis 6. Geelipilt inimesel ja primaatidel Alu insertsiooni tuvastamisest. -/- ilma Alu-ta homosügoot; A/- Alu-ga heterosügoot; A/A Alu-ga homosügoot. Marker: MassRuler™ DNA Ladder, Low Range (Fermentas).

WNK1 geeni 10. ja 11. ekson on inimesel ja šimpansil kõrgelt konsserveerunud. 10. ekson on 100% identne ning 459 bp pikkune 11. ekson erineb inimesel ja šimpansil vaid ühe nukleotiidi poolest. Samuti on tuvevalt konsserveerunud 10. intron ja seda just rohkem introni esimeses poolees ja piirkonnas kuhu on inimesel inserteerunud AluYb8

33
järjestus. 10. introni allavoolu jäävas pooles on inimese ja šimpansi vahel toimunud muutusi rohkem.

4.2 AluYb8 insertsiooni jaotuvus erinevates populatsioonides

Kuna indiviidide arv erinevates populatsioonides ei olnud sarnane ja mõne puhul liiga väike, moodustati alleelisageduste esitamiseks 22-st genotüpiseeritud valimist vastavalt populatsiooni geograafia ja ajaloolisele päritolule seitsme gruppi. Keskmised Alu insertsiooniga alleelisagedused moodustatud gruppides on esitatud tabelis 6. Kõikide vaatluse all olnud populatsioonide alleelisagedused on toodud lisas 3.

Selgelt eristus teistest gruppidest Sahaara-alune Aafrika, kuhu kuuluvad populatsioonid, mis jäävad Sahaara kõrbest lõuna poole. Neis piirkondades jää alleelisagedus populatsioonide kaupa vahemikku 2,1-7%, olles keskmiselt 4,8%. Euroopas jää alleelisagedus vahemikku 13,4-16,1% ja Aasias 11,6-22%, olles keskmiselt vastavalt 14,8% ja 15,9%.

Fisher’i Exact testiga uuriti allelise jaotuvuse erinevust Euroopa, Aasia ja Sahaara-aluse Aafrika populatsioonidest moodustatud gruppide vahel. Statistiliselt olulised tulemused saadi, kui võrreldi omavahel Sahaara-alust rühma Euroopa ja Asiaga (p-väärtused vastavalt 0,02 ja 0,05).

Kui võrrelda Sahaara-aluse Aafrika keskmist alleelisagedust 4,8% kõikide teiste uuritud populatsioonide keskmise alleelisagedusega 16,8% võib väita, et uuritud Sahaara kõrbest lõunasse jäävates populatsioonides on keskmine \(Alu \)-ga alleelisagedus 3,5 korda madalam kui keskmine alleelisagedus teistes uuritud populatsioonides (Fisher´i Exact testi p-väärtus 0,02).

Tabel 6. \(AluYb8 \) insertsiooniga alleelisagedused populatsioonigruppides.

<table>
<thead>
<tr>
<th>Grupp</th>
<th>Valimi suurus</th>
<th>Alleelisagedus</th>
<th>Grupi kooseis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ida-Euroopa</td>
<td>1523</td>
<td>15,9%</td>
<td>eestlased, tšehhid</td>
</tr>
<tr>
<td>Lääne-Euroopa</td>
<td>121</td>
<td>14,1%</td>
<td>CEPH, baskid, kataloonlased</td>
</tr>
<tr>
<td>Ida-Aasia</td>
<td>68</td>
<td>16,8%</td>
<td>hannid, korealased</td>
</tr>
<tr>
<td>Volga-Uural</td>
<td>94</td>
<td>17%</td>
<td>tatarlased, baškiirid</td>
</tr>
<tr>
<td>Mustlased</td>
<td>50</td>
<td>12%</td>
<td>Hispaania mustlased</td>
</tr>
<tr>
<td>Sahaara-alune</td>
<td>141</td>
<td>4,8%</td>
<td>mandenkaalud, tansaanlased,</td>
</tr>
<tr>
<td>Aafrika</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Põhja-Aafrika</td>
<td>230</td>
<td>16,4%</td>
<td>viis valimit Marokost, saharaavid, alžeerlased, tuneeslased</td>
</tr>
</tbody>
</table>

35
4.3 *AluYb8* assotsiatsioonianalüüs vererõhu ja biokeemia markeritega ning juht-kontroll uuring

Vererõhu assotsiatsioonianalüüs viidi läbi 1140 Eesti indiviidiga, kes olid pikaalgased hüpertensiivseid ravimeid mittetarbivad veredoonorid või hüpertoonikud, kellel oli mõõdetud vererõhu näidud enne ravi algust. Assotsiatsioonianalüüs viidi läbi uuritavate vererõhu näidete mediaanväärtustega, arvestades indiviidide sugu vanust ja kehamassi indeksit. Lineaarsel regressioonianalüüsil aditiivset geenidoosi mudelit kasutades ilmnes statistiliselt tähendusrikas seos Eesti populatsioonis *AluYb8* insertsiioni ja süstoolse vererõhu (p=0,039) ning statistiliselt oluliselt lähedane assotsiatsioon diastoolse vererõhu (p=0,073) vahel. Seost kinnitas ka läbiviidud LRT, kus p-väärtused olid süstoolse ja diastoolse vererõhu korral vastavalt 0,025 ja 0,043. Samade testidega naisi ja mehi eraldi uurides selgus, et seos *Alu* insertsiioni ja vererõhu vahel ilmneb selgemini naistel. 750 naist eraldi testides saadi aditiivse testi p-väärtuseks süstoolse vererõhu korral 0,038 ja diastoolse korral 0,027 ning LRT kasutades vastavalt 0,012 ja 0,014. 390 meese eraldi analüüsidestatistiliselt tähendusrikaid p-väärtusi ei saadud. Läbiviidud analüüside selgus ka regressiooni koefitsient, mis oli kõikides statistiliselt olulise p-väärtusega testides positiivne (tabel 7). Positiivne regressiooni koefitsient viitab vererõhu seisukohast *Alu*-ga alleleli võimaliku riskiefeektile.

Tabel 7. Vererõhu assotsiatsiooniuuringus leitud p-väärtused ja statistiliselt olulise tulemusega testide regressiooni koefitsendid.

<table>
<thead>
<tr>
<th></th>
<th>SVR</th>
<th></th>
<th></th>
<th>DVR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>aditiivne test</td>
<td>LRT</td>
<td>aditiivne test</td>
</tr>
<tr>
<td>Koos</td>
<td>1140</td>
<td>0,039(1,79)</td>
<td>0,025(2,33)</td>
<td>0,073</td>
</tr>
<tr>
<td>Mehed</td>
<td>390</td>
<td>0,66</td>
<td>0,6</td>
<td>0,89</td>
</tr>
<tr>
<td>Naised</td>
<td>750</td>
<td>0,038(2,22)</td>
<td>0,012(3,31)</td>
<td>0,027(1,47)</td>
</tr>
</tbody>
</table>

SVR – süstoolne vererõhk; DVR – diastoolne vererõhk; LRT – (likelihood ratio test); n – indiviidide arv; sulgudes on esitatud regressiooni koefitsent

Tabel 8. Eestlaste süstoolse (SVR) ja diastoolse (DVR) vererõhu näitude keskmised ja mediaanväärtused erineva genotüübiga indiviididel.

<table>
<thead>
<tr>
<th>Koos</th>
<th>Naised</th>
<th>Mehed</th>
</tr>
</thead>
<tbody>
<tr>
<td>n=(805; 303; 32)</td>
<td>n=(520; 207; 23)</td>
<td>n=(285; 96; 9)</td>
</tr>
<tr>
<td>SVR</td>
<td>DVR</td>
<td>SVR</td>
</tr>
<tr>
<td>-/- keskmine</td>
<td>139,4</td>
<td>86,2</td>
</tr>
<tr>
<td>-/- mediaan</td>
<td>137</td>
<td>85</td>
</tr>
<tr>
<td>A/- keskmine</td>
<td>141,3</td>
<td>87,3</td>
</tr>
<tr>
<td>A/- mediaan</td>
<td>138</td>
<td>86,5</td>
</tr>
<tr>
<td>A/A keskmine</td>
<td>145,5</td>
<td>89,2</td>
</tr>
<tr>
<td>A/A mediaan</td>
<td>143,3</td>
<td>87,8</td>
</tr>
</tbody>
</table>

-/- ilma Alu-ta homosügoot; A/- Alu-ga heterosügoot; A/A Alu-ga homosügoot; sulgudes on märgitud indiviidide arv genotüüpide kaupa (-/-; A/-; A/A)
Joonis 7. Joonisel on kujutatud Eesti naiste süstoolse (SVR) ja diastoolse (DVR) vererõhu (mmHg) erinevate genotüüpide karp-vurrud diagrammid. -/- ilma Alu-ta homosügoodid (n=520); A/- Alu-ga heterosügoodid (n=207); A/A Alu-ga homosügoodid (n=23).

Tabel 9. Alu-ga alleelisagedused Eesti patsientidel ja kontrollidel.

<table>
<thead>
<tr>
<th></th>
<th>patsiendid</th>
<th>kontrollid</th>
</tr>
</thead>
<tbody>
<tr>
<td>koos</td>
<td>17,6%</td>
<td>15,2%</td>
</tr>
<tr>
<td>naisted</td>
<td>18,8%</td>
<td>15,3%</td>
</tr>
<tr>
<td>mehed</td>
<td>15,4%</td>
<td>14,9%</td>
</tr>
</tbody>
</table>
4.4 AluYb8 insertsiooni mõju geeniekspressioonile

Tuvastatud PCR produktidega viidi läbi GeneScan analüüs, millega oli võimalik välja selgitada vaatluse all olnud WNK1 splaissvormide suhteline ekspressioonitase, mis arvutati kui GeneScan analüüsid saadud splaissvormide piigi pindala jagatis referentsgeenide RPII ja GAPDH piikide pindalaga.

![Diagram of splaissvormid](https://via.placeholder.com/150)

Tabel 10. Oodatud PCR produktide pikkused ja nende tuvastamine antud töös.

<table>
<thead>
<tr>
<th></th>
<th>Produkti pikkus (bp)</th>
<th>PCR-il tuvastatud</th>
<th>1. splaissvormid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ex 8-13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>kõik eksonid</td>
<td>1279</td>
<td>ei</td>
<td>1</td>
</tr>
<tr>
<td>-11</td>
<td>820</td>
<td>väga örnalt</td>
<td>2</td>
</tr>
<tr>
<td>-11 ja -12</td>
<td>542</td>
<td>jah</td>
<td>3</td>
</tr>
<tr>
<td>-9 ja -11</td>
<td>736</td>
<td>väga örnalt</td>
<td>4</td>
</tr>
<tr>
<td>-9, -11 ja -12</td>
<td>458</td>
<td>jah</td>
<td>5</td>
</tr>
<tr>
<td>Ex 8-10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>kõik eksonid</td>
<td>308</td>
<td>jah</td>
<td>1, 2 ja 3</td>
</tr>
<tr>
<td>-9</td>
<td>224</td>
<td>jah</td>
<td>4 ja 5</td>
</tr>
<tr>
<td>Ex 10-13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>kõik eksonid</td>
<td>917</td>
<td>ei</td>
<td>1</td>
</tr>
<tr>
<td>-11</td>
<td>458</td>
<td>jah</td>
<td>2 ja 4</td>
</tr>
<tr>
<td>-11 ja -12</td>
<td>180</td>
<td>jah</td>
<td>3 ja 5</td>
</tr>
<tr>
<td>GAPDH</td>
<td>196</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RPII</td>
<td>239</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1Delaloy jt., 2003 tuvastatud splaissvormid (joonis 8), mis annavad käesolevas töös PCR-il vastava pikkusega produkte.

Usaldusväärssete tulemuste saamiseks viidi ühe indiviidi RNA-ga läbi kaks cDNA sünteesi, mõlema cDNA sünteesi produktidega teostati kolm PCR amplifikatsiooni ja kõik PCR produktid kanti kahele geelile. Seega ühe indiviidi ühe splaissvormi kohta saadi kaksteist andmepunktit. Täpsemal analüüsil kasutati vaid teisest cDNA sünteesist lähtuvaid andmeid, sest need olid ühtlasemad ja seega usaldusvääsemad. Kuna GAPDH-i GeneScan analüüsi tulemused olid väga ebastabiilsed kasutati suhtelise ekspressioonitaseme arvutamisel referentsgeenina vaid RPII-te.

Erinevate WNK1 vormide suhtelised ekspressioonitasemed olid sama genotüübiga indiviidiide vahel väga varieeruvad ning erinevust plaiissvormide ekspressioonis genotüüpide vahel ei tuvastatud. Arvestades konkreetse AluYb8 asukohta WNK1 genis, võis eeldada, et kui Alu insertsoon mõjutab alternatiivsete vormide ekspressioonitasemeid, on see seotud eksonoid 11 ja 12 sisaldavate vormide tasemete muutmisega. Olulist erinevust nende vormide vahel ei esinenud, kuid visuaalselt oli karp-vurrud diagrammilt (joonis 10) tuvastatav trend, et Alu insertsooniga homosügootidel on 12. eksonit sisaldava transkripti ekspressioonitase madalam.

Joonis 10. 12. eksonit sisaldava WNK1 splaiissvormi suhtelised ekspressioonitasemad esinevad karp-vurrud diagramm. SET – suhteline ekspressioonitase; */- ilma Alu-ta homosügootidel; /- Alu-ga heterosügootidel; A/A Alu-ga homosügootidel.
5. ARUTELU

5.1 Alu elemendid ja polümorfsed Alu-d populatsioonigeneetikas

Mobiilsed DNA elemendid moodustavad inimese genoomist üle 45%. Suurimaks selliste elementide rühmaks on Alu kordused, mille arv ulatub 1,1 miljoni koopiani. Alu elemendid on umbes 300 aluspaari pikad ning asetsevad tihti intronites, geenide 3’ mittetransleeritud alades ja geenidevahelistes piirkondades (Batzer ja Deininger, 2002).

Alu-d on grupeeritud kolme suurde (J, S ja Y) perekonda, mis on omakorda jaotatud väiksemateks alamperekondadeks. Käesolevas uuringus WNK1 geenite intronis paiknev polümorfne AluYb8 on inimese genoomis esindatud umbes 2200 koopiaaga, samas kui šimpansi genoomist on leitud vaid üheksa AluYb8 koopiat. Sellisele plahvatuslikule AluYb8 ekspansioonile inimese liinis olevat olud olguvad mõju inimese genoomi ülesehitusele ja tavaliselt arhitektuurile, muutes meie geeniekspresiooni ja kromosoomide liikumiskäikutes jagunemisel (Gibbons jt., 2004).

Enamik Alu kordusi (J ja S perekonna liikmed) on duplitseerunud primaatide varajase evolutsiooni käigus 40 miljonit aastat tagasi, kuid Leiahega kõik hiljem inserteerunud Alu-d kuuluvad nooremate perekonnadele. Mõned Y perekonna liikmed (Y, Yc1, Yc2, Ya5, Ya5a2, Ya8, Yb8 ja Yb9) on sisenened inimese genoomi nii hiljuti ning jätavad duplitseerumist üles, et on olenevalt olemasolust või puudumisest polümorfsed (Batzer ja Deininger, 2002). Polümorfsetel Alu elementidel on olulised eelised fülogeneetilistes ja populatsioonigeneetilistes uurimustes võrreldes SNP-de mikrosatelliitide ja RFLP-dega (Restriction Fragment Length Polymorphism). Nimelt on Alu insertsioon genoomi konkreetsesse positsiooni reeglina ühekordne sündmus, ning väga harva toimub juba inserteerunud järjestus eemaldamine samast positsioonist, mis tähendab, et sama polümorfset Alu omavad inimesed on pärit päriselt üheselt eellaselt. Samuti on polümorfsete Alu-de korral üheselt määratlav eellaseisund, milleks on Alu puudumine konkreetsest positsioonist (Xing jt., 2007).

5.2 Alu insertsiooni mõju genoomi funktsioonile ja seos komplekshaigustega

Alu elemendi inserteerumine genoomi on tavaliselt negatiivse efektiga põhjustades geneetilist ebastabiilsust ja geneetilisi haigusi mitmel moel. Sisenedes geenipromootorpiirkonda võib Alu mõjutada transkriptsiooni, muutes promootori metülatsioonitaset või takistades transkriptsioonifaktorite seondumist. Alu sisenemisel kodeerivasse alasse saab suure tõenäosusega kahjustatud avatud lugemisraam või korrektna splaissingu toimumine. Samuti võivad Alu-d mõjutada genoomi läbi nendevahelise ebavõrdse homoloogilise rekombinatsiooni toimumise (Batzer ja Deininger, 2002).

seostatud erinevate vähkkasvajatega, hüperkolesterolseemiaga, α-talasseemiaga, diabeediga ja paljude teiste haigustega (Deininger ja Batzer, 1999).

Antud magistritöös tuvastatud WNK1 geeni 10. intronisse paigutuva polümorfse AluYb8 insertsiooni seost vererõhuga võib pidada uueks näiteks Alu järjestuse assotsiatsioonist komplekshaigustega. Tuntuimaks näiteks, kus Alu elemendi insertsioon intronisse võib mõjutada geeni funktsiooni on ACE (DCP1) geen. ACE kodeerib angiotensiini konverteerivat ensüümi, mille ülesandeks on vere elektrolüütide tasakaalu ja vererõhu kontroll. Nimetatud geen kuuestikummendas intronis on kirjeldatud polüomorfset 287 aluspaari pikkust Alu elementi, mida on paljudes töödes seostatud vererõhu ja kardiovaskulaarhaigustega (Schunkert, 1997). Alu insertsioon ACE geen 16. intronis põhjustab selle kandjatel madalamat ACE taset vere seerumis. Hui jt., 2006 on näidanud assotsiatsiooni MICB geenis esimeses intronisse paigutuva polüomorfse Alu ja astma vahel.

5.3 WNK1 variantide assotsiatsioon vererõhu taseme ja essentsiaalse hüpertensiooniga

5.4 \textit{Alternatiivse splaissingu roll geeniekspressioonis}

Hiljutised kogu genoomi peal läbiviidud alternatiivse splaissingu analüüsid on viidanud, et 40-60% inimese geenidest esineb alternatiivseid vorme. See tähendab, et alternatiivne splaissing on inimese genoomi funktsionaalse keerukuse loomise seisukohast üks peamistest mehhanismidest (Modrek ja Lee, 2002).

Alternatiivse splaissingu regulatsioonis osalevad paljud eksonitesse ja intronitesse paigutuvad järjestused, mis on seotud protsessi korrektse toimumisega. Splaissingu reaksioone viib läbi splaisosoomi kompleks, seondudes intronites ja eksonites asetsevate regulatiivsete järjestustega (Black, 2003). Hiljutised uuringud on kinnitanud ka alternatiivse splaissingu raku- ja koespetsiifilisust (Blencowe, 2006).

Ligi 300 bp pikkuse \textit{Alu}Yb8 insertsioon \textit{WNK1} geeni suhteliselt lühikesse (1211 bp) 10. intronisse võib muuta splaissinguks vajalike järjestuste paiknemist intronis ja mõjutada selaläbi splaisosoomi seonumist või selle tööd. Sellised häired alternatiivse splaissingu toimumises viiksid suure tõenäosusega geeni alternatiivsete vormide
ekspressioonitaseme muutuseni. Kuigi käsulevas magistritöös ei näidatud olulist erinevust geeni alternatiivsete vormide ekspressioonitasemes leukotsüütides, on siiski võimalik, et AluYb8 WNK1 geeni 10. intronis omab funktsionaalset efekti mõnes muus koes, kuna WNK1 geeni ekspressiooni- ja funktsioonispektor on lai. Vererõhu seisukohast võiks uuritud Alu olulist rolli mängida neerus.

Käsulevas töös kasutatud GeneScan meetodi tundlikkus jäi tõenäoliselt liiga madalaks, et tuvastada võimalikke erinevusi alternatiivsete vormide ekspressioonitasemetes. Analüüsi tulemus sõltus paljudest eelnevatest etappidest nagu RNA eraldamisest, cDNA sünteesist, PCR-ist ning produktide kokkusegamise ja geelilekandmise täpsusest. Meetod võiks olla sobilik rohkem selliste analüüside läbiviimiseks, kus geeniekspressiooni erinevused on suured. See vähendaks eelnevate etappide ebatäpsuste tõttu tingitud võimalike tulemuste kadumise tõenäosust.
KOKKUVÕTE

Käesoleva magistritöö kirjanduse ülevaates tutvustati hüpertensiooni olemust ja klassifikatsiooni, loetleti siiani tuvastatud hüpertensiooni monogeensed vormid ja kirjeldati hüpertensiooni kui komplekshaigust. Samuti anti üliülevaade meetoditest haiguse kandidaatgeenide tuvastamiseks. Lähemalt tutvustati hüpertensiooni kandidaatgeeni \textit{WNK1}, kirjeldati geeni tähtsamaid funktsioone ja toodi välja uurimused \textit{WNK1} geenivariantide seoste kohta hüpertensiooniga.

Töö praktilise osa eesmärgiks oli välja selgitada \textit{WNK1} 10. intronis paikneva uue polümorfse \textit{AluYb8} seos vererõhuga ja võimalik mõju geeni alternatiivsete vormide ekspressioonile. Lisaks selgitati välja \textit{Alu} sagedus erinevates Euroopa, Aasia ja Aafrika populatsioonides ning uuriti \textit{Alu} järjestust sisaldava genoomse piirkonna konserveeritust inimese ja šimpansi vahel.

Töö tulemusena näidati, et \textit{WNK1} 10. intron ja sellega piirnevad eksonid on inimese ja šimpansi vahel kõrgelt konserveerunud. Samuti selgus \textit{AluYb8} 3,5 korda madalam allallelisisagedus populatsioonides, mis jäävad Sahaara kõrbest lõuna poole võrreldes ülejäänud vaatluse all olnud populatsioonidega. Assotsiatsiooni uuringu tulemusena tuvastati, et Eesti naistel on \textit{Alu} insertsioon \textit{WNK1} 10. intronis seotud nii diastoolse kui süstoolse vererõhuga. Kuigi juht-kontroll uuringu statistiliselt olulisi tulemusi ei saadud, oli hüpertensiooni naispatsientidel tuvastatav kõrgem \textit{Alu}-ga allallelisisagedus võrreldes tervete kontrollidega.
New polymorphic AluYb8 in hypertension candidate gene WNK1: distribution and impact on gene function

Margus Putku

SUMMARY

Essential hypertension with its concurrent risk to other cardiovascular diseases affects approximately 25% of population in industrialized societies. Determining the genetic component of the disease is crucial for better understanding of the molecular basis of the phenotype and for developing more effective treatment of the disease.

This work is part of a bigger project to investigate the genetic background of hypertension. The study is focused on a new polymorphic AluYb8 element located in intron 10 in hypertension candidate gene WNK1 [With No K (lysine)]. WNK1 plays an important role in salt homeostasis through different mechanisms and thereby has functional importance in blood pressure regulation.

My study showed that intron 10 in WNK1 with its flanking exons is highly conserved between human and chimpanzee. AluYb8 in WNK1 gene intron 10 is probably human specific because it is absent in the genome of orangutan, gorilla and 11 chimpanzees. Alu distribution studies using samples from 22 population from Europe, Asia and Africa showed 3,5 times lower average allele frequency in Sub-Saharan populations than average allele frequency in other studied populations. Association between Alu and blood pressure was studied using 1140 estonian individuals, whose blood pressure values were repeatedly measured under no treatment of any antihypertensive drugs. Statistically significant association was found with both systolic and diastolic blood pressure (p-values respectively 0,039 and 0,043). Case-control study was performed using 362 controls and 414 patients but statistically nonsignificant results were observed in spite of slightly different allele frequencies in patients and controls, especially among women (18,3% and 15,8% respectively). Functional studies were also performed, but no variability in expression levels of alternative forms of WNK1 gene forms was detected.
TÄNUVAVALDUSED

KASUTATUD KIRJANDUS

KASUTATUD VEEBIAADRESSID

http://www.ensembl.org/
http://frodo.wi.mit.edu/
http://www.ebi.ac.uk/Tools/clustalw2/
http://www.langsrud.com/fisher.htm
http://pngu.mgh.harvard.edu/~purcell/plink/
http://www.r-project.org/
http://bioinfo.ebc.ee/mprimer3/
Lisa 1. Töös kasutatud praimerite järjestused.

<table>
<thead>
<tr>
<th>Praimeri nimetus</th>
<th>Järjestus 5’-3’</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Praimerid Alu insertsioni tuvastamiseks</td>
<td></td>
</tr>
<tr>
<td>Intr10_F</td>
<td>GGGTAACCAACCCTTGAAGTAGG</td>
</tr>
<tr>
<td>Intr10_R</td>
<td>GGGTACTTCTCAAGTGATTAGGAGGA</td>
</tr>
<tr>
<td>B. Praimerid sekveneeritava ala amplifitseerimiseks</td>
<td></td>
</tr>
<tr>
<td>WNK1_Seq1_F</td>
<td>TGGGGTGAGGGAGATAATTGGGTG</td>
</tr>
<tr>
<td>WNK1_Seq_R</td>
<td>ACTCTGTGGGTGCCCTCTTTTGCT</td>
</tr>
<tr>
<td>Sekveneerimispraimerid</td>
<td></td>
</tr>
<tr>
<td>WNK1_Seq3_F</td>
<td>TCAGGTAGTGAGAGGGATGTG</td>
</tr>
<tr>
<td>WNK1_Seq4_F</td>
<td>ACCCCTTGTCTATGGAAGGGTCC</td>
</tr>
<tr>
<td>WNK1_Seq5_F</td>
<td>CTTCCAGTGGGAGAGCCGC</td>
</tr>
<tr>
<td>WNK1_Alu_F</td>
<td>CGGCCTCCCAAAGTGCTGGG</td>
</tr>
<tr>
<td>C. Funktsionaalses uuringus kasutatud praimerid</td>
<td></td>
</tr>
<tr>
<td>Ex 7_8 F</td>
<td>FAM-TTATCTGATGGGACGGTTGA</td>
</tr>
<tr>
<td>Ex 10 F</td>
<td>FAM-TGCACAGCCAGTGAGTCAGCC</td>
</tr>
<tr>
<td>Ex 10 R</td>
<td>TGGCTCTCGAGGAGCAACCT</td>
</tr>
<tr>
<td>Ex 13_14 R</td>
<td>GCAACATCTGAATGTGCACTG</td>
</tr>
<tr>
<td>GAPDH F</td>
<td>CCATGGAGAAGGCTGGGG</td>
</tr>
<tr>
<td>GAPDH R</td>
<td>HEX-CCAAGTTGTCATGGATGC</td>
</tr>
<tr>
<td>RPII F</td>
<td>CTTACGGGTGCTGGGCATT</td>
</tr>
<tr>
<td>RPII R</td>
<td>TET-GTGCAGGTCTCCATAA</td>
</tr>
</tbody>
</table>

¹Neid praimereid kasutati ka sekveneerimisel.
Lisa 2. *WNKI* ekson 10-11 joondus. Alu/Alu – Alu insersiooniga homosügoot; Wt – ilm Alu-ta homosügoot. Rohelisega on tähistatud eksonite 10 ja 11 järjestused. Wt järjestuse 1181. positsioonis on sinisega märgitud SNP rs880054 asukoht. Punane ala joondusel viitab *AluYb*8 järjestusele.

<table>
<thead>
<tr>
<th>Hotime</th>
<th>Seq</th>
<th>Simpson</th>
<th>Simpson</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alu/Alu</td>
<td>CAGCAGGTAATACACGACGCACGGCCCTTCCTACAACAGACAGTGCGATTTTACCTTCCACAG</td>
<td>ACATCAACCTCCAGTGAGGCCACTACTGCACAGCCAGTGAGTCAACCTCAAGCTCCACAA</td>
<td>120</td>
</tr>
<tr>
<td>Wt</td>
<td>CAGCAGGTAATACACGACGCACGGCCCTTCCTACAACAGACAGTGCGATTTTACCTTCCACAG</td>
<td>ACATCAACCTCCAGTGAGGCCACTACTGCACAGCCAGTGAGTCAACCTCAAGCTCCACAA</td>
<td>120</td>
</tr>
<tr>
<td>Simpans</td>
<td>CAGCAGGTAATACACGACGCACGGCCCTTCCTACAACAGACAGTGCGATTTTACCTTCCACAG</td>
<td>ACATCAACCTCCAGTGAGGCCACTACTGCACAGCCAGTGAGTCAACCTCAAGCTCCACAA</td>
<td>120</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hotime</th>
<th>Seq</th>
<th>Simpson</th>
<th>Simpson</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alu/Alu</td>
<td>ACATCATCTTCATTCTCCAGTGAGGCCACTACTGCACAGCCAGTGAGTCAACCTCAAGCTCCACAA</td>
<td>ACATCATCTTCATTCTCCAGTGAGGCCACTACTGCACAGCCAGTGAGTCAACCTCAAGCTCCACAA</td>
<td>120</td>
</tr>
<tr>
<td>Wt</td>
<td>ACATCATCTTCATTCTCCAGTGAGGCCACTACTGCACAGCCAGTGAGTCAACCTCAAGCTCCACAA</td>
<td>ACATCATCTTCATTCTCCAGTGAGGCCACTACTGCACAGCCAGTGAGTCAACCTCAAGCTCCACAA</td>
<td>120</td>
</tr>
<tr>
<td>Simpans</td>
<td>ACATCATCTTCATTCTCCAGTGAGGCCACTACTGCACAGCCAGTGAGTCAACCTCAAGCTCCACAA</td>
<td>ACATCATCTTCATTCTCCAGTGAGGCCACTACTGCACAGCCAGTGAGTCAACCTCAAGCTCCACAA</td>
<td>120</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hotime</th>
<th>Seq</th>
<th>Simpson</th>
<th>Simpson</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alu/Alu</td>
<td>GTCTTGCTTCCAAGTTCACGCTGGAAAACAGTGAAACTTTTTTTTTTTTTTTAAACAGGTAA</td>
<td>GTCTTGCTTCCAAGTTCACGCTGGAAAACAGTGAAACTTTTTTTTTTTTTTTAAACAGGTAA</td>
<td>180</td>
</tr>
<tr>
<td>Wt</td>
<td>GTCTTGCTTCCAAGTTCACGCTGGAAAACAGTGAAACTTTTTTTTTTTTTTTAAACAGGTAA</td>
<td>GTCTTGCTTCCAAGTTCACGCTGGAAAACAGTGAAACTTTTTTTTTTTTTTTAAACAGGTAA</td>
<td>180</td>
</tr>
<tr>
<td>Simpans</td>
<td>GTCTTGCTTCCAAGTTCACGCTGGAAAACAGTGAAACTTTTTTTTTTTTTTTAAACAGGTAA</td>
<td>GTCTTGCTTCCAAGTTCACGCTGGAAAACAGTGAAACTTTTTTTTTTTTTTTAAACAGGTAA</td>
<td>180</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hotime</th>
<th>Seq</th>
<th>Simpson</th>
<th>Simpson</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alu/Alu</td>
<td>AACTCTTAATTTCTGAAAGGGTGCTAAAAGGGATTTCCATGTAACTTGTCCTTTCATGTG</td>
<td>AACTCTTAATTTCTGAAAGGGTGCTAAAAGGGATTTCCATGTAACTTGTCCTTTCATGTG</td>
<td>240</td>
</tr>
<tr>
<td>Wt</td>
<td>AACTCTTAATTTCTGAAAGGGTGCTAAAAGGGATTTCCATGTAACTTGTCCTTTCATGTG</td>
<td>AACTCTTAATTTCTGAAAGGGTGCTAAAAGGGATTTCCATGTAACTTGTCCTTTCATGTG</td>
<td>240</td>
</tr>
<tr>
<td>Simpans</td>
<td>AACTCTTAATTTCTGAAAGGGTGCTAAAAGGGATTTCCATGTAACTTGTCCTTTCATGTG</td>
<td>AACTCTTAATTTCTGAAAGGGTGCTAAAAGGGATTTCCATGTAACTTGTCCTTTCATGTG</td>
<td>240</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hotime</th>
<th>Seq</th>
<th>Simpson</th>
<th>Simpson</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alu/Alu</td>
<td>GATAGACTTCTACCTTTTCTTCTAAGGGTAACCAACCCTTGAAGTAGTTAATCTCATTTG</td>
<td>GATAGACTTCTACCTTTTCTTCTAAGGGTAACCAACCCTTGAAGTAGTTAATCTCATTTG</td>
<td>300</td>
</tr>
<tr>
<td>Wt</td>
<td>GATAGACTTCTACCTTTTCTTCTAAGGGTAACCAACCCTTGAAGTAGTTAATCTCATTTG</td>
<td>GATAGACTTCTACCTTTTCTTCTAAGGGTAACCAACCCTTGAAGTAGTTAATCTCATTTG</td>
<td>300</td>
</tr>
<tr>
<td>Simpans</td>
<td>GATAGACTTCTACCTTTTCTTCTAAGGGTAACCAACCCTTGAAGTAGTTAATCTCATTTG</td>
<td>GATAGACTTCTACCTTTTCTTCTAAGGGTAACCAACCCTTGAAGTAGTTAATCTCATTTG</td>
<td>300</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hotime</th>
<th>Seq</th>
<th>Simpson</th>
<th>Simpson</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alu/Alu</td>
<td>CAGAAAATGAGTAGAGTAGCATCCATTGGTGATCATATGGATTATTAAATGGAATGGTTAC</td>
<td>CAGAAAATGAGTAGAGTAGCATCCATTGGTGATCATATGGATTATTAAATGGAATGGTTAC</td>
<td>360</td>
</tr>
<tr>
<td>Wt</td>
<td>CAGAAAATGAGTAGAGTAGCATCCATTGGTGATCATATGGATTATTAAATGGAATGGTTAC</td>
<td>CAGAAAATGAGTAGAGTAGCATCCATTGGTGATCATATGGATTATTAAATGGAATGGTTAC</td>
<td>360</td>
</tr>
<tr>
<td>Simpans</td>
<td>CAGAAAATGAGTAGAGTAGCATCCATTGGTGATCATATGGATTATTAAATGGAATGGTTAC</td>
<td>CAGAAAATGAGTAGAGTAGCATCCATTGGTGATCATATGGATTATTAAATGGAATGGTTAC</td>
<td>360</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hotime</th>
<th>Seq</th>
<th>Simpson</th>
<th>Simpson</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alu/Alu</td>
<td>GTTACTGACAGCAGCTTCTCCTACTTTCTTCTAAGGGTAACCAACCCTTGAAGTAGTTAATCTCATTTG</td>
<td>GTTACTGACAGCAGCTTCTCCTACTTTCTTCTAAGGGTAACCAACCCTTGAAGTAGTTAATCTCATTTG</td>
<td>420</td>
</tr>
<tr>
<td>Wt</td>
<td>GTTACTGACAGCAGCTTCTCCTACTTTCTTCTAAGGGTAACCAACCCTTGAAGTAGTTAATCTCATTTG</td>
<td>GTTACTGACAGCAGCTTCTCCTACTTTCTTCTAAGGGTAACCAACCCTTGAAGTAGTTAATCTCATTTG</td>
<td>420</td>
</tr>
<tr>
<td>Simpans</td>
<td>GTTACTGACAGCAGCTTCTCCTACTTTCTTCTAAGGGTAACCAACCCTTGAAGTAGTTAATCTCATTTG</td>
<td>GTTACTGACAGCAGCTTCTCCTACTTTCTTCTAAGGGTAACCAACCCTTGAAGTAGTTAATCTCATTTG</td>
<td>420</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hotime</th>
<th>Seq</th>
<th>Simpson</th>
<th>Simpson</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alu/Alu</td>
<td>TTAACAGAGTTAAATTAACAGAGTGTTAAATAAAAAGGTTGCTTCTGTAACTGACATCTTGGCA</td>
<td>TTAACAGAGTTAAATTAACAGAGTGTTAAATAAAAAGGTTGCTTCTGTAACTGACATCTTGGCA</td>
<td>480</td>
</tr>
<tr>
<td>Wt</td>
<td>TTAACAGAGTTAAATTAACAGAGTGTTAAATAAAAAGGTTGCTTCTGTAACTGACATCTTGGCA</td>
<td>TTAACAGAGTTAAATTAACAGAGTGTTAAATAAAAAGGTTGCTTCTGTAACTGACATCTTGGCA</td>
<td>480</td>
</tr>
<tr>
<td>Simpans</td>
<td>TTAACAGAGTTAAATTAACAGAGTGTTAAATAAAAAGGTTGCTTCTGTAACTGACATCTTGGCA</td>
<td>TTAACAGAGTTAAATTAACAGAGTGTTAAATAAAAAGGTTGCTTCTGTAACTGACATCTTGGCA</td>
<td>480</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hotime</th>
<th>Seq</th>
<th>Simpson</th>
<th>Simpson</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alu/Alu</td>
<td>TTTCCTCTCTGATATCTGGTAGTTAATCTCCTTAGGGTGTTAAAATGTAACTTGTTATTTTTC</td>
<td>TTTCCTCTCTGATATCTGGTAGTTAATCTCCTTAGGGTGTTAAAATGTAACTTGTTATTTTTC</td>
<td>540</td>
</tr>
<tr>
<td>Wt</td>
<td>TTTCCTCTCTGATATCTGGTAGTTAATCTCCTTAGGGTGTTAAAATGTAACTTGTTATTTTTC</td>
<td>TTTCCTCTCTGATATCTGGTAGTTAATCTCCTTAGGGTGTTAAAATGTAACTTGTTATTTTTC</td>
<td>540</td>
</tr>
<tr>
<td>Simpans</td>
<td>TTTCCTCTCTGATATCTGGTAGTTAATCTCCTTAGGGTGTTAAAATGTAACTTGTTATTTTTC</td>
<td>TTTCCTCTCTGATATCTGGTAGTTAATCTCCTTAGGGTGTTAAAATGTAACTTGTTATTTTTC</td>
<td>540</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hotime</th>
<th>Seq</th>
<th>Simpson</th>
<th>Simpson</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alu/Alu</td>
<td>ATGTAAGATTCTTCGACTTTCTTTTCTTAGGGTTAAAATGTAACTTGTTATTTTTC</td>
<td>ATGTAAGATTCTTCGACTTTCTTTTCTTAGGGTTAAAATGTAACTTGTTATTTTTC</td>
<td>600</td>
</tr>
<tr>
<td>Wt</td>
<td>ATGTAAGATTCTTCGACTTTCTTTTCTTAGGGTTAAAATGTAACTTGTTATTTTTC</td>
<td>ATGTAAGATTCTTCGACTTTCTTTTCTTAGGGTTAAAATGTAACTTGTTATTTTTC</td>
<td>600</td>
</tr>
<tr>
<td>Simpans</td>
<td>ATGTAAGATTCTTCGACTTTCTTTTCTTAGGGTTAAAATGTAACTTGTTATTTTTC</td>
<td>ATGTAAGATTCTTCGACTTTCTTTTCTTAGGGTTAAAATGTAACTTGTTATTTTTC</td>
<td>600</td>
</tr>
</tbody>
</table>
Alu/Alu AAATATTTTCAAATAGGTCCATTTAAGCTGTGTTTTAAAAAAAAGCCACCCCTTGCTATAGGAAGGGTC 1379
Wt AAATATTTTCAAATAGGTCCATTTAAGCTGTGTTTTAAAAAAAAGCCACCCCTTGCTATAGGAAGGGTC 1072
Simpans AAATATTTTCAAATAGGTCCATTTAAGCTGTGTTTTAAAAAAAAGCCACCCCTTGCTATAGGAAGGGTC 1060

Alu/Alu CTCTCTCTATTGCCAAATGCTGGAAGCATTAGCAAATATTTCTATGACAAAAGGTGTAGAAC 1439
Wt CTCTCTCTATTGCCAAATGCTGGAAGCATTAGCAAATATTTCTATGACAAAAGGTGTAGAAC 1132
Simpans CTCTCTCTATTGCCAAATGCTGGAAGCATTAGCAAATATTTCTATGACAAAAGGTGTAGAAC 1120

Alu/Alu AGTAATAGTCTATTTAGCCTCTTTCTCTGCTCTCCTTTCCATATTTTTATGTGGCAT 1499
Wt AGTAATAGTCTATTTAGCCTCTTTCTCTGCTCTCCTTTCCATATTCTATGTGGCAT 1192
Simpans AGTAATAGTCTATTTAGCCTCTTTCTCTGCTCTCCTTTCCATATTCTATGTGGCAT 1180

Alu/Alu ATTAACTTAACACTAATGTATGCAGGGTTTTGTTGGTTTGGTGTTTTTTTTTTTTGTTT 1559
Wt ATTAACTTAACACTAATGTATGCAGGGTTTTGTTGGTTTGGTGTTTTTTTTTTTTGTTT 1250
Simpans ATTAACTTAACACTAATGTATGCAGGGTTTTGTTGGTTTGGTGTTTTTTTTTTTTGTTT 1236

Alu/Alu GTTTTTTCCTTCTTTTTGGCTAATACATAAATCTTGCTTTTGGCAGCCTTGCTTTTTTTT 1619
Wt GTTTTTTCCTTCTTTTTGGCTAATACATAAATCTTGCTTTTGGCAGCCTTGCTTTTTTTT 1310
Simpans GTTTTTTCCTTCTTTTTGGCTAATACATAAATCTTGCTTTTGGCAGCCTTGCTTTTTTTT 1296

Alu/Alu TTTTTTTTTTTTTTTTAA-GCCTGTCTGTTTTGTTTTTCTTTACCTTCCCAGCTTCCAGT 1678
Wt TTTTTTTTTTTTTTTTAA-GCCTGTCTGTTTTGTTTTTCTTTACCTTCCCAGCTTCCAGT 1369
Simpans TTTTTTTTTTTTTTTTAAAGCCTGTCTGTTTTGTTTTTCTTTACCTTCCCAGCTTCCAGT 1356

Alu/Alu TTCCCAGCCAGTACCAACTATCCAAGGCGAACCTCAGATCCCAGTTGCGACACAACCCTC 1738
Wt TTCCCAGCCAGTACCAACTATCCAAGGCGAACCTCAGATCCCAGTTGCGACACAACCCTC 1429
Simpans TTCCCAGCCAGTACCAACTATCCAAGGCGAACCTCAGATCCCAGTTGCGACACAACCCTC 1416

Alu/Alu GGTTGTTCCAGTCCACTCTGGTGCTCATTTCCTTCCAGTGGGACAGCCGCTCCCTACTCC 1798
Wt GGTTGTTCCAGTCCACTCTGGTGCTCATTTCCTTCCAGTGGGACAGCCGCTCCCTACTCC 1489
Simpans GGTTGTTCCAGTCCACTCTGGTGCTCATTTCCTTCCAGTGGGACAGCCGCTCCCTACTCC 1476

Alu/Alu CTTGCTCCCTCAGTACCTTCCCTTCCCATCACAATGGCAGCTGGCATTACTCAGCCTCTGCT 1858
Wt CTTGCTCCCTCAGTACCTTCCCTTCCCATCACAATGGCAGCTGGCATTACTCAGCCTCTGCT 1549
Simpans CTTGCTCCCTCAGTACCTTCCCTTCCCATCACAATGGCAGCTGGCATTACTCAGCCTCTGCT 1536

Alu/Alu TCAGCAAGTTTTTCTCATTCCCTTCCCATCACAATGGCAGCTGGCATTACTCAGCCTCTGCT 1918
Wt TCAGCAAGTTTTTCTCATTCCCTTCCCATCACAATGGCAGCTGGCATTACTCAGCCTCTGCT 1609
Simpans TCAGCAAGTTTTTCTCATTCCCTTCCCATCACAATGGCAGCTGGCATTACTCAGCCTCTGCT 1596

Alu/Alu CACGTTGCTCTCTCATTCTGCTACATGATCATCACATCAATCACAATCCCTCTCATTCTGCTACAG 1978
Wt CACGTTGCTCTCTCATTCTGCTACATGATCATCACATCAATCACAATCCCTCTCATTCTGCTACAG 1669
Simpans CACGTTGCTCTCTCATTCTGCTACATGATCATCACATCAATCACAATCCCTCTCATTCTGCTACAG 1656

Alu/Alu TCAGCTTCCAACCCTTCTGCAGCCTGTGACTCAGCTGCCAAGTCAGGTTCACCCACAGCT 2038
Wt TCAGCTTCCAACCCTTCTGCAGCCTGTGACTCAGCTGCCAAGTCAGGTTCACCCACAGCT 1729
Simpans TCAGCTTCCAACCCTTCTGCAGCCTGTGACTCAGCTGCCAAGTCAGGTTCACCCACAGCT 1716

64
Alu/Alu CCTACAACGAGCAGTCCATGGGAATACCAGCTAACCTTGGAACAGCTGCTGAGGT 2098
Wt CCTACAACGAGCAGTCCATGGGAATACCAGCTAACCTTGGAACAGCTGCTGAGGT 1789
Simpans CCTACAACGAGCAGTCCATGGGAATACCAGCTAACCTTGGAACAGCTGCTGAGGT 1776
**
Alu/Alu TCCACTTCTCGAGATGTCTGTACCAG 2129
Wt TCCACTTCTCGAGATGTCTGTACCAG 1820
Simpans TCCACTTCTCGAGATGTCTGTACCAG 1807

Lisa 3. *Alu* insertsiooniga allelelisagedused kõikides uuritud populatsioonides, erinevate genotüüpidega indiviidide arv populatsioonis ja kogu valimi suurus.

<table>
<thead>
<tr>
<th>Populatsioon</th>
<th>Individide arv</th>
<th>Allelisagedus</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Alu/Alu</td>
<td>Alu/-</td>
</tr>
<tr>
<td>eestlased</td>
<td>32</td>
<td>303</td>
</tr>
<tr>
<td>tšehhid</td>
<td>9</td>
<td>102</td>
</tr>
<tr>
<td>CEPH</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>baskid</td>
<td>0</td>
<td>14</td>
</tr>
<tr>
<td>kataloonlased</td>
<td>0</td>
<td>11</td>
</tr>
<tr>
<td>hannid</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>korealased</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>tatarlased</td>
<td>1</td>
<td>16</td>
</tr>
<tr>
<td>baškiirid</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>mustlased</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>mandenkaalud</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>tansaanlased</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>gabonlased</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>pügmeed</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>MOJ (Oujda)</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>MCA (Casablanca)</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>MRA (Rabat)</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>MCH (Chefchaouen)</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>MNA (Nador)</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>saharaavid</td>
<td>6</td>
<td>13</td>
</tr>
<tr>
<td>tuneeslased</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>alžeerlased</td>
<td>0</td>
<td>14</td>
</tr>
</tbody>
</table>

1Alu insertsiooniga homosügoodid, *2Alu*-ga heterosügoodid, *3Alu*-ta homosügoodid

4Maroko linn, kust proovid on kogutud.